
Hem Dutt

www.bpbonline.com

Full Stack iOS
Development with

Swift and Vapor
Full stack iOS development made easy

ii

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-323

www.bpbonline.com

 iii

Dedicated to
This book is dedicated to students and software engineers embarking

on their journey as full-stack developers or exploring the dynamic
iOS domain. May it inspire and empower you to unlock your

full potential in this exciting field.
Together, let’s embrace the world of full-stack iOS development

and strive for excellence.

iv

About the Author

Hem Dutt started his software engineering career in 2010 as a macOS (OS X) and
iOS application developer and thereafter designed and developed numerous
native macOS and iOS applications for various clients across the globe while
working in multiple MNCs. With more than a continuous decade of experience
working in macOS and iOS, Hem Dutt has developed and managed applications in
multiple domains, including healthcare, insurance, VPN clients, publishing, IOT,
and VoIP. His passion for designing and developing secure, reliable, and modular
software is evident from his blogs, client awards/recommendations, and open-
source projects. Prior to this book, he authored “Interprocess Communication with
macOS: Apple IPC Methods,” cementing his expertise in the Apple ecosystem.

 v

Acknowledgements

I have to start by thanking my beloved wife, Payal Bhardwaj, for keeping me
motivated throughout my journey as a writer. She is always by my side and
supports me to fulfill my dreams, however impossible they seem to others. Thank
you a ton, my dear, for being the pillar of my strength. You are a superwoman.

I must offer a very special thanks to my parents, who nurtured my childhood and,
despite their limited means, provided me with the best they could possibly do and
shaped my character.

I would also like to thank BPB Publications for giving me this opportunity, and
a big thanks to technical reviewers and editors for helping me in shaping the
chapters and content of this book.

I would also like to thank my colleagues and friends, who always believed in me
and encouraged me.

Finally and most importantly, I would like to acknowledge my two beautiful
children, Adwit and Anika. Thanks, Adwit, for being such a sweetheart and
adorable baby and filling the environment with unconditional love, and Anika,
for being such a powerhouse and my super girl!!. I love you both so much.

vi

Preface

Welcome to “Full Stack iOS Development with Swift and Vapor.” In this book, we
embark on an exciting journey that combines the power of Swift programming
language, Vapor framework, and iOS development to delve into the realm of full-
stack iOS development.

In today’s interconnected world, the demand for versatile developers who can
seamlessly bridge the gap between the backend and frontend is skyrocketing. As
the boundaries between server-side and client-side become increasingly blurred,
mastering full-stack development has become a valuable skill set.

This book is designed to cater to a wide range of readers, from aspiring developers
and students to seasoned iOS professionals seeking to expand their expertise.
Whether you are taking your first steps in Swift or are already well-versed in the
language, this book equips you with the knowledge and tools to navigate the
world of full-stack iOS development with confidence.

We begin by laying the foundation, exploring the essentials of Vapor, Swift, and
iOS app development. From there, we delve into backend development, covering
topics such as persisting data, working with models, and integrating APIs.
Simultaneously, we dive into frontend development, unraveling the intricacies of
creating compelling user interfaces, networking, and authentication.

Throughout this journey, we emphasize best practices, security considerations, and
performance optimization techniques to ensure that you not only build functional
applications but also create robust, secure, and high-performing ones.

Real-world projects and hands-on exercises will guide you, allowing you to apply
your newly acquired knowledge in practical scenarios. You will witness the power
of integrating Swift and Vapor, leveraging their synergistic potential to develop
cutting-edge full-stack iOS applications.

I invite you to embark on this transformative journey of becoming a full-stack iOS
developer.

Chapter 1: Full-stack Development Overview – This chapter aims to give a basic
understanding of the term Full Stack Development, a brief history of the term, and
the concept of a minimum viable product. We will also explore the problems and

 vii

advantages of Full stack development and provide a brief introduction to Swift on
the server.

Chapter 2: Setting Up the Environment – This chapter aims to give a basic
understanding of tools and SDKs to start with Vapor and iOS development. In this
chapter, we will cover the installation of Xcode, Vapor Toolbox, and starter projects
in Vapor as well as for iOS.

Chapter 3: Routing, MVC and JSON in Vapor – This chapter aims to give a basic
understanding of creating Routes for the server application, a brief understanding
of the MVC design pattern, and creating Controllers in a Vapor application. We
will also explore JSON format and handling JSON in a Vapor app and extend this
discussion, and we will also cover the Postman app for testing the Routes.

Chapter 4: Async and HTML Rendering in Vapor – In continuation of the last
chapter, This chapter aims to extend the basic understanding of Async, Logging,
Capturing Errors and Stack Traces, and finally, handling HTML rendering in
a Vapor project. In this chapter, we will implement a small part of the code to
showcase HTML rendering on a webpage using Leaf and Vapor routes.

Chapter 5: PostgreSQL Integration in Vapor – In this chapter, we will study the
integration of PostgreSQL with Vapor. PostgreSQL is an open-source, relational
database system that focuses on extensibility and standards. It is designed for
enterprise use and also has native support for geometric primitives, such as
coordinates which comes in handy working with Fluent, which also supports these
primitives and saves nested types, such as dictionaries, directly into PostgreSQL.

Chapter 6: Building User Interfaces for iOS – The aim of this chapter is to
understand the basic building blocks of iOS UI development and complete the
circle of Full Stack Development with Swift.

Chapter 7: Data Persistence with Core Data and SQLite in iOS – Implement
data persistence on iOS using Core Data with SQLite as a persistent store. In this
chapter, we will write our very first Core Data implementation for storing data in
an iOS app. After reading this chapter, readers will be able to Model data using
Xcode’s model editor, Add new records to Core Data, Fetch a set of records from
Core Data, Display the fetched records, and learn the basics of Networking.

viii

Chapter 8: Full Stack Implementation – We implemented small sample codes to
understand working on Vapor and iOS app. All these samples were discussed in
isolation to make it simple for you to grab specific concepts without worrying
about the larger picture. In this chapter, we will specifically look into the larger
picture and will look into Full Stack implementation of an app.

Chapter 9: Advanced Full-stack Concepts – In this chapter, we will explore some
advanced topics related to full stack, which are very important with respect to
overall system design and system architecture. These concepts are a must for
commercial application development.

Chapter 10: Deploying iOS and Vapor Applications – The objective of this chapter
is to study and understand the deployment process/es for our iOS and Vapor apps
to the public. For Vapor apps, we will study deployment through Heroku and
Docker, whereas for iOS, there is only one way, and that is through App Store,
which will also be covered in this chapter.

 ix

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/yqsj4yl

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Full-Stack-iOS-Development-with-Swift-
and-Vapor. In case there's an update to the code, it will be updated on the existing
GitHub repository.
We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

x

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then
see and use your unbiased opinion to make purchase decisions. We at BPB
can understand what you think about our products, and our authors can see
your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

 xi

Table of Contents

 1. Full-stack Development Overview .. 1
Introduction .. 1
Structure .. 1
Introduction to full-stack development .. 2
Brief history .. 4

Full-stack: what does it mean? ..5
Minimum viable product (MVP) ... 5

Airbnb ..6
Foursquare ...6

Problems with full-stack development .. 6
Advantages of full-stack development ... 9
Swift on server and Vapor ... 10
Swift packages for back-end development .. 13

SwiftNIO ..14
AsyncHTTPClient ...15
Swift AWS Lambda Runtime ..15
Soto—AWS SDK Swift ..16

Conclusion .. 17

 2. Setting Up the Environment ...19
Introduction .. 19
Structure .. 19
Installation of Xcode .. 20
Installation of Vapor toolbox .. 21
Hello world project (Vapor) .. 22

Build and run project ..22
Folder structure ...24

Public folder ..25
Sources ..25
Run ...25
Tests ..26

xii

Swift Package Manager .. 26
Hello World project (iOS) ... 27

Project structure ..31
Add Hello World label ..32

Run Xcode project .. 35
Conclusion .. 39

 3. Routing, MVC and JSON in Vapor ...41
Introduction .. 41
Structure .. 41
Objectives .. 42
Routes .. 42
Router methods .. 43

Basic routes ..43
Nested routes ...44
Route parameters ..47
Anything routes and CatchAll routes ...50
Query strings ...52
Route groups ..53

Model-View-Controller (MVC) ... 54
Working with JSON ... 63

Posting JSON and Postman app ...67
Conclusion .. 72

 4. Async and HTML Rendering in Vapor ...73
Introduction .. 73
Structure .. 73
Objectives .. 74
Async ... 74

Async await ...74
Migrating to async/await ..74

Logging .. 75
Environment ... 77
Errors ... 78

Abort ..78

 xiii

Abort Error ...79
Debuggable Error ...81

Stack traces .. 83
Swift Backtrace¶ ...83

Error traces ...83
ErrorMiddleware ..84

Leaf ... 85
Conclusion .. 91

 5. PostgreSQL Integration in Vapor ...93
Introduction .. 93
Structure .. 93
Objectives .. 94
Data persistence with Vapor ... 94
Installing and setting up PostgreSQL .. 94
Fluent ORM ..102

Adding Fluent to a new project...102
Adding Fluent to an existing project ..105

CRUD operations ...105
Migrations ...108
Postico ..110
Create and save model ...114

Create model ..114
Save model ...114

Conclusion ..119

 6. Building User Interfaces for iOS ...121
Introduction ..121
Structure ..121
Autolayout with Storyboards ..122
Swift UI ..134

Working with text ..135
Working with images ...138
Working with Stacks ..142

Conclusion ..146

xiv

 7. Data Persistence with Core Data and SQLite in iOS147
Introduction ..147
Structure ..147
Core Data ..148

Core Data stack ...148
Include Core Data in a new project ..149
Include Core Data in an existing project ..150
CRUD operations ..152

Codegen ..156
Category/extension ..157

Core Data migrations ..159
Lightweight data migration...160
Networking ...162
Protocol support ...163
Conclusion ..163

 8. Full Stack Implementation ...165
Introduction ..165
Structure ..165
Objectives ..166
Project outline...166
Setup remote database ...166
Server app ..169

Models ..171
Migrations ...173
Controllers ...175
Config and routes ..178

iOS app ..181
Models ..182

Networking ...184
User interface ..188
Test run ..196
Conclusion ..198

 xv

 9. Advanced Full-stack Concepts ..199
Introduction ..199
Structure ..199
Objectives ..199
Middleware ...200

Creating middleware ...201
WebSockets ...203

Messages ..203
Sending ...204
Receiving ...204
Closing ..205

APNS..205
Security ..210

Authentication ...210
Basic authentication ...211
Bearer authentication ..212
Composition ...214
Session ...215
JWT ..218

KeyChain ...220
Adding password to Keychain ...221

Conclusion ..222

10. Deploying iOS and Vapor Applications ...223
Introduction ..223
Structure ..223
Objectives ..224
Vapor app deployment ..224

Heroku ...224
Docker ..228

Set up Docker ...229
Build and run ...230
Production deployment ..231

iOS app deployment ...231

Code signing ..231
Create App Store Connect record for the app ...233

Add new app ..233
Archive and upload the app ...234
Configure app’s metadata in App Store Connect235
Submit app for review ..237

Conclusion ..238

Index ..239

Introduction
This chapter aims to give a basic understanding of the term full-stack development,
a brief history of the term, and that of a minimum viable product. We will also
explore the problems and advantages of full-stack development and provide a brief
introduction to Swift on the server.

Structure
In this chapter, we will cover the following topics:

• Introduction to full-stack development
• Brief history
• Minimum viable product (MVP)
• Problems with full-stack development
• Advantages of full-stack development
• Swift on server and Vapor
• Swift packages for back-end development

Chapter 1
Full-stack

Development
Overview

2 Full Stack iOS Development with Swift and Vapor

Introduction to full-stack development
We have heard the term full-stack developer in the software industry, typically
referring to a Web developer who can build the front-end and back-end for a Web
app. Instead of specializing, a full-stack developer is able to work across the back-
end and front-end spectrum of app development.

It is an already established fact that being a specialist in one field or technology
and gaining mastery in that particular aspect of technology has distinct advantages,
but in the modern world, as technology is rapidly changing and evolving, many
companies are seeking talented developers who are able to understand and work
on the entire spectrum of the front and back-end technologies and are able to create
a usable end product. Hacker Rank’s survey on the most sought-after talent pool in
2020 provides a good insight into the demand for full-stack developers.

As per Hacker Rank Report: Across company sizes, hiring managers agree that
full-stack developers are a top priority: 38% of hiring managers say it is the #1 role
to fill in 2020. Back-end developers and data scientists were ranked second and
third priorities, respectively.

The emphasis on full-stack developers was most pronounced in small companies
(1–49 employees), 43% of which ranked the role as their top priority.

Though the qualities that define a full-stack developer are a subject of debate,
most agree that they should have a basic understanding (or better) of all layers of
a tech stack and should be able to generate a minimum viable product on their
own. It is why they are especially important in small organizations, where fewer
employees often have to do the job of many.

See the following figure (source: https://info.hackerrank.com/rs/487-WAY-049/
images/HackerRank-2020-Developer-Skills-Report.pdf).

Full-stack Development Overview 3

Figure 1.1: The 2020’s most in-demand talent pool

As is clear from the report, these developers, also known as full-stack developers, are
once again in demand. Does this mean this is not a new phenomenon? Yes, this role
has a long history and has had its share of ups and downs, as well as arguments
and disagreements from all kinds of people about what full-stack developer really
means and what should be the level of expertise of the developer in different aspects
of the stack.

Full-stack developers are useful as generalists who can quickly come up with a
minimum viable product (MVP) on their own. They can also be very helpful in
providing insight into the entire application infrastructure and contributing to all its
parts. It is a sought-after ability for many roles in the software development industry.

4 Full Stack iOS Development with Swift and Vapor

Brief history
If we look at it from a high level, full-stack development has been part of the
programming world since the very beginning, but it was not understood in its
current context before.

The full stack development in the public domain only came to light in 2008, when
designing for the Web as well as mobile became mainstream. Earlier, this term was
used with varying understandings regularly in the 1970s as well as the 80s.

The main reason for this was that, at that time, there was not much difference
between a back-end programmer and a front-end programmer. Slowly, with time,
the distinction between front-end and back-end became defined, and two different
streams of application development came into existence, that is, front-end and back-
end development. In 2008, the term full-stack Web development gained momentum,
and with passing years it has come to become one of the most in-demand job roles
of present times.

According to Stack Overflow’s 2021 developer survey, over 49.47% of developers
describe themselves as full-stack. See the following figure (source: https://insights.
stackoverflow.com/survey/2021#developer-profile-developer-roles):

Figure 1.2: Developer roles

Full-stack Development Overview 5

While during all these times, the term full stack has gained traction in the Web
developer community, an obvious question is whether it can be applied to mobile
application development. It is an interesting question, what a full-stack mobile app
developer would mean?

As we know that mobile app developers work on the client side of the application
or, in loose terms, front-end, and therefore, it might look perfectly sensible to assume
that a mobile app developer simply needs the skill to develop a back-end to be a
full-stack developer.

But this is not as simple as it looks, and we are going to explore why it is a lot more
complicated in the context of an iOS developer.

Full-stack: what does it mean?
The term stack here refers to the collection of technologies needed to build an
application. For example:

LAMP (Linux, Apache, MySQL, and PHP) or MEAN (MongoDB, Express, Angular,
and NodeJS) or MERN (MongoDB, Express, ReactJS, and NodeJS), and so on are
technology stacks having all the parts needed to build a minimum viable product of
Web app.

To understand the term full-stack in terms of iOS development, let us use the MERN
preceding example and substitute React with Swift to replace the front-end part in a
Web app stack with native Swift. Therefore, a full-stack on iOS will look something
like MESN (MongoDB, Express, Swift, and NodeJS).

Minimum viable product (MVP)
As discussed in previous sections, full-stack developers are useful as generalists
who can quickly come up with a minimum viable product (MVP) on their own. Let
us understand what an MVP is.

A minimum viable product, or MVP, is a product with only enough features to
onboard initial targeted customers and validate a product-market fit for a business
idea early in the product development cycle. In the software industry, the MVP can
actually help the product team receive early user feedback and make it possible to
iterate and improve the product.

The basic idea of agile methodology is built on a process for validating and iterating
products based on short user input cycles, and so the MVP plays a central role in
agile development.

6 Full Stack iOS Development with Swift and Vapor

MVP can be understood as the initial version of a new product that allows a team to
get the maximum feedback and customer validation from customers with the least
amount of effort.

A company might decide to develop and release a minimum viable product because
of the following:

•	 The company wants to release the product to the market as quickly as
possible with basic features to gain an early-mover advantage.

•	 The company wants to test the idea with real target customers before
committing a large budget to the product’s full development.

MVP has the following two distinct features:
•	 It has enough features for consumers to purchase the product.
•	 It has a feedback mechanism for users so that the company can collect real

data for product-market fit.

If you are still wondering what this would look like in the real world? Let us go
through the stories of a couple of brands that launched successful MVPs.

Airbnb
With no money to build the business, the founders used their own apartments to
validate their idea of creating a market offering for peer-to-peer rental housing
online. They created a minimalist website, did marketing about their property, and
found several customers almost immediately.

Foursquare
The location-based social network Foursquare started with just a one-feature MVP,
that is, offering only check-ins and gamification rewards. Foursquare’s development
and product team then added recommendations, city guides, and other features
until they validated the idea with an ever-growing user base.

Problems with full-stack development
One of the problems with the term full-stack is that it does not exactly define the skill
level needed from the developer across the stack. For example, how can we gauge
the threshold skill needed from a full-stack iOS developer to develop a website at
a bare minimum? A full-stack iOS developer should know how to put together a
simple static website using HTML and CSS, let us say, for playing a YouTube video
URL within the App.

Full-stack Development Overview 7

But if the developer is working on a complex social networking app that will require
an admin portal to control user’s permissions based on various parameters and
which will also require a lot of other complex user flows such as authentication, data
storage, and APIs.

Both of these scenarios will need a huge shift in terms of expertise needed in various
stacks. Generally speaking, the expectation from a full-stack iOS developer is to have
deep expertise in the iOS domain and basic knowledge of how to put together simple
Web apps using HTML and CSS.

At the other end of iOS app development, there are hybrid app developers who
use frameworks like React Native and Flutter to develop Web and mobile apps. It
seems much easier to earn the title “full-stack” going the hybrid way, but native
iOS app development has its own merits, and hybrid and native app developers are
generally not the same.

We also need to understand that, in practice, a full-stack iOS developer might
not complete a real project on his/her own. Although theoretically possible, an
individual developing all parts of a project means a lot of risks. In practice, a full-
stack iOS developer is a generalist who has a deep understanding of one or two
components of the full-stack and a high level of knowledge of the rest. This makes
a full-stack iOS developer suitable for creating minimum viable projects, proof of
concepts, and leading an overall project from a high level.

The fact that there is no well-defined and concrete definition of a full-stack developer
and the role requires continuous juggling of technologies is validated by Hacker
Rank’s survey 2020. As per the survey, full-stack developers are required to learn
new skills most often.

As per Hacker Rank Report: Full-stack developers may be in the highest demand,
but their role is also one of the most professionally demanding. Sixty percent
of full-stack developers were required to learn a completely new framework or
platform in the last year—more than any other role polled.

Full-stack developers also have to learn the most languages: 45% reported that
they had to pick up a new one within the last year. Their peers have to learn more
about theoretical concepts; data scientists and DevOps engineers were required to
learn new concepts most often (33%).

With expertise that spans front-end, back-end, and more (depending on whom
you ask), full-stack developers have one of the more nebulous job descriptions
in the technical world. The relative flexibility of their role—and the breadth of

8 Full Stack iOS Development with Swift and Vapor

technologies they have to keep up with as a result—means learning on the job
never stops.

See the following figure (source: https://info.hackerrank.com/rs/487-WAY-049/
images/HackerRank-2020-Developer-Skills-Report.pdf):

Figure 1.3: Full-stack developers are required to learn new skills most often

As is evident from the data, full-stack development is gaining traction, but it has
its own unique problems, even more aggravated in the case of Full-stack mobile
development. So, as it always happens in such cases, the industry is divided on this.

People on the anti-full-stack developer side are raising their voices with an argument
for what does or does not constitute full-stack development. The anti-full-stack
argument is pivoted around the idea that a full-stack developer should have the
ability to easily navigate between the back-end and front-end development with a
high level of expertise.

Full-stack Development Overview 9

The anti-full-stack argument says that to be really effective, full-stack developers
should be able to:

•	 Write high-quality code for the client side and should be at par with a senior
client-side developer.

•	 Write equally high-quality code for the server side and should be at par with
a senior server-side developer.

•	 Manage the infrastructure and deployment on the server side.
•	 Manage client application releases (on App Store in case of iOS app).

And while many developers can do some work that covers both disciplines, very
few can do both well.

So, against full-stack development, the argument is that a truly full-stack developer
is almost impossible to find, and while too many people boast of themselves as full-
stack developers, they do not have full-stack qualifications in reality.

In a way, it seems that it is an unrealistic demand. A true full-stack developer should
have dual mastery of both the client and server side, which is almost impossible, given
the speed at which new technology is evolving. The against full-stack developer
argument is that this encourages wide breadth, shallow depth knowledge and does
not allow an individual to attain expertise.

Advantages of full-stack development
As discussed in the previous section, there are visible problems in understanding full-
stack development and what the expectation should be from a full-stack developer.
For all practical purposes, we can understand full-stack development with a broader
interpretation of the term. The idea that a full-stack developer has to be an expert
in every layer of the tech stack is an expectation, and instead, if they have working
knowledge of the entire stack, with expertise in only a few layers, this should be
good enough for all practical implications.

We can see the definition of full-stack development for a less strict set of requirements,
described as follows:

•	 Comfortable with writing both client-side and back-end code with moderate
expertise in one and deep expertise in another.

•	 Can Generate a minimum viable product (MVP) with minimal support from
others.

•	 Provide expert-level specialty in either client or server side.

