Henryk Tyszka

Excel Solver w praktyce

Zadania ekonometryczne z rozwiązaniami

Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii metodą kserograficzną, fotograficzną, a także kopiowanie książki na nośniku filmowym, magnetycznym lub innym powoduje naruszenie praw autorskich niniejszej publikacji.

Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli.

Autor oraz wydawca dołożyli wszelkich starań, by zawarte w tej książce informacje były kompletne i rzetelne. Nie biorą jednak żadnej odpowiedzialności ani za ich wykorzystanie, ani za związane z tym ewentualne naruszenie praw patentowych lub autorskich. Autor oraz wydawca nie ponoszą również żadnej odpowiedzialności za ewentualne szkody wynikłe z wykorzystania informacji zawartych w książce.

Redaktor prowadzący: Małgorzata Kulik

Projekt okładki: Studio Gravite / Olsztyn Obarek, Pokoński, Pazdrijowski, Zaprucki Grafika na okładce została wykorzystana za zgodą Shutterstock.com

Helion S.A. ul. Kościuszki 1c, 44-100 Gliwice tel. 32 231 22 19, 32 230 98 63 e-mail: *helion@helion.pl* WWW: *http://helion.pl* (księgarnia internetowa, katalog książek)

Drogi Czytelniku! Jeżeli chcesz ocenić tę książkę, zajrzyj pod adres *http://helion.pl/user/opinie/exsolv* Możesz tam wpisać swoje uwagi, spostrzeżenia, recenzję.

Kody źródłowe wybranych przykładów dostępne są pod adresem: *https://ftp.helion.pl/przyklady/exsolv.zip*

ISBN: 978-83-283-6473-8

Copyright © Helion S.A. 2021

Printed in Poland.

Kup książkę

- Poleć książkę
- Oceń książkę

Księgarnia internetowa

• Lubię to! » Nasza społeczność

Spis treści

Od autora	5
Rozdział 1. Excel Solver	9
1.1. Uaktywnianie dodatku Solver w MS Excel	10
1.2. Obsługa dodatku Solver	10
1.3. Wprowadzanie zmian w oknie Parametry dodatku Solver	16
1.4. Opcje ustawień dodatku Solver	17
1.5. Warunki znalezienia rozwiązania zadania	20
Rozdział 2. Rozwiązania przykładów i zadań	

Zadanie 11

Projektowane jest wybudowanie osiedla mieszkaniowego "Gigant" dla 70 000 mieszkańców. Na osiedlu mogą być budowane dwa rodzaje bloków:

- 1. 11-kondygnacyjny, składający się z:
 - 5 mieszkań typu M2
 - oraz 20 mieszkań typu M3, M4 i M5,
- 6-kondygnacyjny, składający się z 20 mieszkań typu M3 oraz z 10 mieszkań typu M1, M2 i M4.

Struktura rodzin przyszłych mieszkańców pod względem liczebności rodziny wyznacza następujące dolne limity mieszkań; co najmniej:

- 1 000 mieszkań M1,
- 3 000 mieszkań M2,
- 10 000 mieszkań M3,
- 6 000 mieszkań M4,
- 5 000 mieszkań M5.

Ze względów pozaekonomicznych liczba bloków 11-kondygnacyjnych nie może przekroczyć 500, a 6-kondygnacyjnych — 300 budynków.

Przewidywany koszt jednostkowy m² powierzchni mieszkalnej kształtuje się:

- w bloku 11-kondygnacyjnym 2 000 zł/m²,
- w bloku 6-kondygnacyjnym 1 800 zł/m².

Poszczególne typy mieszkań w obu rodzajach budynków mają tę samą powierzchnię mieszkalną:

- $M1 20 m^2$,
- $M2 25 m^2$,
- $M3 37 m^2$,
- $M4 48 m^2$,
- $M5 55 m^2$.

Należy ustalić:

- a) Liczbę bloków 11-kondygnacyjnych na osiedlu tak, aby otrzymać najmniejszy koszt budowy,
- b) Które typy mieszkań wystąpią w rozwiązaniu optymalnym w liczbie większej od wymaganego minimum.

Rozwiązanie

Rozwiązaniem zadania jest znalezienie minimalnej kwoty kosztów wybudowania osiedla — będzie ono sumą iloczynów liczby bloków 11-kondygnacyjnych i bloków 6-kondygnacyjnych, i kosztów ich budowy:

koszt *K* budowy bloków 11- i 6-kondygnacyjnych: $\sum_{i=1}^{2} (n_i \cdot K_i) \rightarrow min$

przy konieczności wybudowania minimalnej liczby mieszkań typu:

- liczba mieszkań typu *M1*: $\sum_{i=1}^{2} (n_i \cdot MI_i) \ge 1000$
- liczba mieszkań typu *M2*: $\sum_{i=1}^{2} (n_i \cdot M2_i) \ge 3000$
- liczba mieszkań typu *M3*: $\sum_{i=1}^{2} (n_i \cdot M3_i) \ge 10000$
- liczba mieszkań typu *M4*: $\sum_{i=1}^{2} (n_i \cdot M4_i) \ge 6000$
- liczba mieszkań typu *M5*: $\sum_{i=1}^{2} (n_i \cdot M5_i) \ge 5000$

gdzie:

*n*_i — liczba bloków (11- i 6-*kondygnacyjnych*),

- i = 1, 2 typ bloku (tutaj: 11- i 6-kondygnacyjny).
- 1. Należy otworzyć plik Modele-Zadania_1-dane.xlsx i arkusz Zadanie_11 tego pliku.
- Następnie utworzyć tabelę zawierającą temat tego zadania (ta tabela jest już utworzona w arkuszu Zadanie_11) uzupełnioną o komórki, do których trzeba wpisać formuły obliczeniowe:

Wyszczególnienie	Blok 11-kondygnacyjny				
Typ mieszkania	М1	M2	M3	M4	M5
Liczba mieszkań w bloku		5	20	20	20
Liczba mieszkańców w tym typie		10	60	80	100
Powierzchnia mieszkania [m²]		25	37	48	55
Powierzchnia w bloku [m²]		125	740	960	1100
Powierzchnia mieszkań ogółem [m ²]	=SUMA.ILOCZYNÓW(C3:F3;C5:F5)				

Koszt jednostkowy powierzchni [zł/m²]			2 000			
Koszt budowy bloku [zł]			=B7*B8			
Liczba mieszkańców w bloku	=SUMA(C4:F4)					
Maksymalna liczba bloków	500					
Wyszczególnienie	Blok 6-kondygnacyjny					
Typ mieszkania	M1 M2 M3 M4					
Liczba mieszkań w bloku	10	10	20	10		
Liczba mieszkańców w tym typie	10	20	60	40		
Powierzchnia mieszkania [m²]	20	25	37	48		
Powierzchnia w bloku [m²]	200	250	740	480		
Powierzchnia mieszkań ogółem [m ²]		=SUMA.I	LOCZYNÓW(B14	4:E14;B16:E16)		
Koszt jednostkowy powierzchni [zł/m²]			1 800			
Koszt budowy bloku [zł]			=B18*B19			
Liczba mieszkańców w bloku			=SUMA(B15:E	15)		
Maksymalna liczba bloków			300			
Typ mieszkania	М1	M2	M3	M4	M5	
Minimalna liczba typów mieszkań	1 000	3 000	10 000	6 000	5 000	
Minimalna liczba mieszkańców w blokach	1 000	6 000	30 000	24 000	25 000	
Minimalna liczba mieszkańców osiedla	70 000					

3. Należy utworzyć tabelę, w komórkach której będą się znajdowały formuły obliczeniowe dla Solvera (sama tabela jest już utworzona w arkuszu *Zadanie_11*), i wpisać te formuły obliczeniowe:

Elementy projektu budowanego osiedla						
Liczba bloków 11-kondygnacyjnych	?					
Liczba bloków 6-kondygnacyjnych	?					
Koszt budowy osiedla	=12*B9+13*B20					
Koszty budowy bloków 11-kondygnacyjnych	=12*B9					
Koszty budowy bloków 6-kondygnacyjnych	=13*B20					
Liczba mieszkańców osiedla	=SUMA(J16:N16)					

Uwaga 1:

- a. Komórkami zmiennymi są komórki z wyliczaną przez Solver liczbą bloków.
- komórką wynikową jest komórka obliczająca koszty budowy (z formułą =12*B9+I3*B20).

Cechy bloków mieszkalnych osiedla								
Typ mieszkania	M1	М2	M3	M4	M5			
Liczba typów mieszkań w blokach 11-kondygnacyjnych		=\$I\$2*C3	=\$I\$2*D3	=\$I\$2*E3	=\$I\$2*F3			
Liczba typów mieszkań w blokach 6-kondygnacyjnych	=\$I\$3*B14	=\$I\$3*C14	=\$I\$3*D14	=\$I\$3*E14				
Ogólna liczba typów mieszkań w blokach	=SUMA (J11:J12)	=SUMA (K11:K12)	=SUMA (L11:L12)	=SUMA (M11:M12)	=SUMA (N11:N12)			
Liczba mieszkańców w blokach 11-kondygnacyjnych		=\$I\$2*C4	=\$I\$2*D4	=\$I\$2*E4	=\$I\$2*F4			
Liczba mieszkańców w blokach 6-kondygnacyjnych	=\$I\$3*B15	=\$I\$3*C15	=\$I\$3*D15	=\$I\$3*E15				
Ogólna liczba mieszkańców w mieszkaniach	=SUMA (J14:J15)	=SUMA (K14:K15)	=SUMA (L14:L15)	=SUMA (M14:M15)	=SUMA (N14:N15)			

- 4. Należy uruchomić dodatek **Solver** (karta **Dane** \rightarrow przycisk **Solver**).
 - 4.1. W oknie Parametry dodatku Solver trzeba wprowadzić:
 - 4.1.1. Pole Ustaw cel: komórka 14 (koszt budowy bloków).
 - 4.1.2. Obszar Na: opcja Min (wartością oczekiwaną jest minimalny koszt budowy).
 - 4.1.3. Pole Przez zmienianie komórek zmiennych: komórki *l2:l3* (liczby *bloków 11*- i 6-k).
 - 4.2. Wprowadzanie ograniczeń.
 - 4.2.1. Należy wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 - 4.2.1.1. Pole Odwołanie do komórki: komórka /2 (obliczenie liczby bloków 11-k).
 - 4.2.1.2. Operator: <= (mniejszy lub równy niż).

4.2.1.3. Pole **Ograniczenie**: komórka *B11* (budowa maksymalnie — 500 bloków), czyli liczba budowanych *bloków 11-kondygnacyjnych* nie może przekraczać 500.

- 4.2.2. Trzeba wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 - 4.2.2.1. Pole Odwołanie do komórki: komórka /3 (obliczenie liczby bloków 6-k).
 - 4.2.2.2. Operator: <= (mniejszy lub równy niż).

4.2.2.3. Pole **Ograniczenie**: komórka **B22** (budowa maksymalnie — 300 bloków), czyli liczba budowanych *bloków 6-kondygnacyjnych* nie może przekraczać 300.

- 4.2.3. Należy wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 - 4.2.3.1. Pole Odwołanie do komórki: komórka J13 (obliczenie liczby mieszkań dla typu M1).
 - 4.2.3.2. Operator: >= (większy lub równy niż).

4.2.3.3. Pole Ograniczenie: komórka B24 (budowa minimum — 1 000 mieszkań),

czyli liczba budowanych mieszkań typu M1 musi wynosić co najmniej 1 000.

- 4.2.4. Trzeba wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 - 4.2.4.1. Pole Odwołanie do komórki: komórka K13 (obliczenie liczby mieszkań dla typu M2).
 - 4.2.4.2. Operator: >= (większy lub równy niż).
 - 4.2.4.3. Pole Ograniczenie: komórka C24 (budowa minimum 3 000 mieszkań),

czyli liczba budowanych mieszkań typu M2 musi wynosić co najmniej 3 000.

- 4.2.5. Należy wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 - 4.2.5.1. Pole Odwołanie do komórki: komórka L13 (obliczenie liczby mieszkań dla typu M3).
 - 4.2.5.2. Operator: >= (większy lub równy niż).
 - 4.2.5.3. Pole Ograniczenie: komórka D24 (budowa minimum 10 000 mieszkań),

czyli liczba budowanych mieszkań typu M3 musi wynosić co najmniej 10 000.

- 4.2.6. Trzeba wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 - 4.2.6.1. Pole Odwołanie do komórki: komórka M13 (obliczenie liczby mieszkań dla typu M4).
 - 4.2.6.2. Operator: >= (większy lub równy niż).
 - 4.2.6.3. Pole Ograniczenie: komórka E24 (budowa minimum 6 000 mieszkań),

czyli liczba budowanych mieszkań typu M4 musi wynosić co najmniej 6 000.

- 4.2.7. Należy wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 - 4.2.7.1. Pole Odwołanie do komórki: komórka N13 (obliczenie liczby mieszkań dla typu M5).
 - 4.2.7.2. Operator: >= (większy lub równy niż).
 - 4.2.7.3. Pole Ograniczenie: komórka F24 (budowa minimum 5 000 mieszkań),

czyli liczba budowanych mieszkań typu M5 musi wynosić co najmniej 5 000.

4.3. Następnie należy wcisnąć przycisk **OK**; nastąpi powrót do okna **Parametry dodatku Solver**.

W polu Podlegający ograniczeniom powinny być widoczne wpisy:

\$|\$2 <= \$B\$11 \$|\$3 <= \$B\$22 \$J\$13 >= \$B\$24 \$K\$13 >= \$C\$24 \$L\$13 >= \$D\$24 \$M\$13 >= \$E\$24 \$N\$13 >= \$F\$24

4.4. Potem z kolei trzeba wcisnąć przycisk **Rozwiąż**; otworzy się okno **Wyniki dodatku** Solver.

4.4.1. Na koniec należy wcisnąć przycisk OK.

Solver znalazł rozwiązania dla takich warunków zadania ujęte w tabelach:

Elementy projektu budowanego osiedla						
Liczba bloków 11-kondygnacyjnych	250					
Liczba bloków 6-kondygnacyjnych	250					
Koszt budowy osiedla	2 214 000 000					
Koszty budowy bloków 11-kondygnacyjnych	1 462 500 000					
Koszty budowy bloków 6-kondygnacyjnych	751 500 000					
Liczba mieszkańców osiedla	95 000					

Trzeba wybudować po 250 bloków 11- i 6-kondygnacyjnych. Wówczas:

- liczba mieszkańców osiedla będzie wynosić 95 000 osób (a więc więcej niż wynikających z warunków zadania 70 000),
- koszt budowy tego osiedla zamknie się w kwocie ogólnej 2 214 000 000 zł.

Szczegóły techniczne dotyczące tych bloków przedstawia tabela:

Cechy bloków mieszkalnych osiedla							
Typ mieszkania	М1	M2	M3	M4	M5		
Liczba typów mieszkań w blokach 11- kondygnacyjnych		1 250	5 000	5 000	5 000		
Liczba typów mieszkań w blokach 6-kondygnacyjnych	2 500	2 500	5 000	2 500			
Ogólna liczba typów mieszkań w blokach	2 500	3 750	10 000	7 500	5 000		
Liczba mieszkańców w blokach 11-kondygnacyjnych		2 500	15 000	20 000	25 000		
Liczba mieszkańców w blokach 6-kondygnacyjnych	2 500	5 000	15 000	10 000			
Ogólna liczba mieszkańców w mieszkaniach	2 500	7 500	30 000	30 000	25 000		

85

Natomiast dla odpowiedzi na pytanie b można:

- zbudować tabelę (jest już utworzona w arkuszu Zadanie_11),
- w odpowiednich komórkach wpisać formuły:

Realizacja minimum liczby mieszkań					
М1	=JEŻELI(J13>B24;"przekracza";JEŻELI(J13=B24;"minimum";"nie realizuje"))				
M2	=JEŻELI(K13>C24;"przekracza";JEŻELI(K13=C24;"minimum";"nie realizuje"))				
M2	=JEŻELI(L13>D24;"przekracza";JEŻELI(L13=D24;"minimum";"nie realizuje"))				
M4	=JEŻELI(M13>E24;"przekracza";JEŻELI(M13=E24;"minimum";"nie realizuje"))				
M5	=JEŻELI(N13>F24;"przekracza";JEŻELI(N13=F24;"minimum";"nie realizuje"))				

 zaznaczyć komórki z formułami i uruchomić formatowanie warunkowe: karta Narzędzia główne → przycisk Formatow. warunk. → polecenie Nowa reguła → typ Formatuj tylko komórki zawierające → przycisk listy Wartość komórki → wybrać Z określonym tekstem → pole Zawierające → w polu tekstowym wpisać *przekracza* → przycisk Formatuj → okno Formatowanie komórek → pole Styl czcionki → zaznaczyć Pogrubiony → przycisk OK → przycisk OK.

Wówczas Excel sam znajdzie i pogrubioną czcionką wyświetli odpowiedź na pytanie, które typy mieszkań wystąpią w liczbie większej od wymaganego minimum:

Realizacja minimum ilości mieszkań							
М1	M2	M3	M4	M5			
przekracza przekracza		minimum	przekracza	minimum			

Jak widać, liczba budowanych mieszkań:

- typu M1, M2 i M4 przekracza zakładane minimum,
- typu M3 i M5 jest równa liczbie zakładanej z założeniach zadania.

Uwaga 2:

Kształt tabeli z formułami w tym opisie różni się od kształtu tabeli wynikowej w arkuszu *Zadanie_11* (jest obrócona o 90°). Kształt tabeli nie ma znaczenia — ważne jest, aby w odpowiednich komórkach wpisywać właściwą treść i adresy komórek w formule *JEŻELI*.

5. Na koniec należy zapisać zmiany w pliku.

Zadanie 44

Trzy Zakłady Przemysłu Odzieżowego zaopatrują w jednakowe płaszcze cztery sklepy fabryczne.

- Zakłady przeznaczają dla sklepów fabrycznych odpowiednio: 300, 450, 800 sztuk płaszczy miesięcznie.
- Zapotrzebowanie sklepów wynosi odpowiednio: 630, 160, 170 i 340 sztuk płaszczy miesięcznie.

Jednostkowe koszty transportu są podane w macierzy C:

 $C = \begin{bmatrix} c_{ij} \end{bmatrix} = \begin{bmatrix} 10 & 40 & 50 & 20 \\ 20 & 60 & 40 & 60 \\ 30 & 30 & 30 & 40 \end{bmatrix}$

- a) Należy opracować plan dostaw minimalizujący łączny koszt transportu.
- b) Jakie będzie rozwiązanie optymalne, jeżeli zdolność produkcyjna zakładu drugiego zmaleje o 250 płaszczy?

Rozwiązanie

Rozwiązaniem zadania jest znalezienie wartości minimalnej dla sumy sum iloczynów kosztów jednostkowych transportu i liczby przewożonych płaszczy:

koszty transportu *K* płaszczy:
$$\sum_{i=1}^{3} \sum_{j=1}^{4} (n_{ij} \cdot K_{ij}) \rightarrow min$$

jednocześnie wypełniając warunki:

liczba płaszczy przewidzianych do wysyłki przewyższa zapotrzebowanie sklepów.

$$\sum_{i=1}^3 n_i > \sum_{j=1}^4 n_j$$

gdzie:

n — liczba przewożonych płaszczy,

i = 1, 2, 3 — przedsiębiorstwo wysyłające płaszcze (tutaj: ZPO 1, ZPO 2, ZPO 3),

j = 1, 2, 3, 4 — sklep otrzymujący płaszcze (tutaj: *sklep 1*, *sklep 2*, *sklep 3*, *sklep 4*).

- 1. Należy otworzyć plik *Modele-Zadania_3-dane.xlsx* i arkusz *Zadanie_44* tego pliku.
- 2. Następnie utworzyć tabelę z tematem tego zadania (ta tabela jest już utworzona w arkuszu *Zadanie_44*) uzupełnioną o komórki dla formuł obliczeniowych wielkości dostaw i zapotrzebowania na płaszcze:

Wyszczególnienie		Maksymalna dostawa	Jednostkowe koszt transportu [zł/szt.]				
		do sklepów [szt.]	Sklep 1	Sklep 2	Sklep 3	Sklep 4	
ZPO 1		300	10	40	50	20	
Nazwa producenta	ZPO 2	450	20	60	40	60	
	ZPO 3	800	30	30	30	40	
Zaj	Zapotrzebowanie sklepów [szt.]		630	160	170	340	
Łączna dostawa do sklepów [szt.]		=SUMA(C5:C7)					
Łączne zapotrzebowanie sklepów [szt.]				=SUMA	(D8:G8)		

Excel obliczył, że możliwości dostaw do sklepów (1 550 szt.) są większe od zapotrzebowania na płaszcze (1 300 szt.); nie wszystkie płaszcze będą wysłane od producentów do sklepów.

3. W dalszej kolejności należy utworzyć tabelę, w komórkach której będą się znajdowały formuły obliczeniowe dla Solvera (sama tabela jest już utworzona w arkuszu *Zadanie_44*), i wpisać te formuły obliczeniowe:

Uwaga:

- **a.** Komórkami zmiennymi są komórki z wyliczanymi przez Solver liczbami *płaszczy* eksportowanych z zakładów przemysłu odzieżowego (ZPO).
- b. Komórką wynikową jest komórka obliczająca sumę kosztów transportu z każdego zakładu ZPO do każdego sklepu (z formułą =SUMA(K4:K7)).

Wiel	Wielkość dostaw do sklepów			Wielkości wysyłki od producentów					
Numer	Razem	Razem koszt	ZI	PO 1	ZP	02	ZP	03	
sklepu	liczba [szt.]	[zł]	liczba [szt.]	koszt [zł]	liczba [szt.]	koszt [zł]	liczba [szt.]	koszt [zł]	
Sklep 1	=SUMA (L4;N4;P4)	=SUMA (M4;O4;Q4)	?	=L4*D5	?	=N4*D6	?	=P4*D7	
Sklep 2	=SUMA (L5;N5;P5)	=SUMA (M5;O5;Q5)	?	=L5*E5	?	=N5*E6	?	=P5*E7	
Sklep 3	=SUMA (L6;N6;P6)	=SUMA (M6;O6;Q6)	?	=L6*F5	?	=N6*F6	?	=P6*F7	
Sklep 4	=SUMA (L7;N7;P7)	=SUMA (M7;07;Q7)	?	=L7*G5	?	=N7*G6	?	=P7*G7	
Razem	=SUMA (J4:J7)	=SUMA (K4:K7)	=SUMA (L4:L7)	=SUMA (M4:M7)	=SUMA (N4:N7)	=SUMA (04:07)	=SUMA (P4:P7)	=SUMA (Q4:Q7)	

- 4. Należy uruchomić dodatek **Solver** (karta **Dane** \rightarrow przycisk **Solver**).
 - 4.1. W oknie Parametry dodatku Solver trzeba wprowadzić:
 - 4.1.1. Pole Ustaw cel: komórka K8 (sumaryczna wielkość kosztów).
 - 4.1.2. Obszar Na: opcja Min (wartością oczekiwaną jest minimalna kwota kosztów).

- 4.1.3. Pole Przez zmienianie komórek zmiennych: wskazać komórki L4:L7;N4:N7;P4:P7 (liczby wysyłanych *płaszczy*).
- 4.1.4. W wierszu Wybierz metodę rozwiązywania: wskazać metodę LP simpleks.
- 4.2. Wprowadzanie ograniczeń.
 - 4.2.1. Należy wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 - 4.2.1.1. Pole **Odwołanie do komórki**: komórka *L8* (liczba otrzymanych płaszczy z *ZPO 1*).
 - 4.2.1.2. Operator: <= (mniejszy lub równy niż).
 - 4.2.1.3. Pole Ograniczenie: komórka C5 (maksymalna dostawa z ZPO-1),

czyli liczba płaszczy wysyłanych z ZPO 1 może wynosić maksymalnie 300 szt.

- 4.2.2. Trzeba wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 - 4.2.2.1. Pole Odwołanie do komórki: komórka N8 (liczba płaszczy z ZPO 2).

4.2.2.2. Operator: <= (mniejszy lub równy niż).

4.2.2.3. Pole **Ograniczenie**: komórka **C6** (maksymalna dostawa z ZPO 2),

czyli liczba płaszczy wysyłanych z ZPO 2 może wynosić maksymalnie 450 szt.

4.2.3. Należy wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.4.2.3.1. Pole Odwołanie do komórki: komórka *P8* (liczba płaszczy z *ZPO 3*).

4.2.3.2. Operator: <= (mniejszy lub równy niż).

- 4.2.3.3. Pole **Ograniczenie**: komórka **C7** (maksymalna dostawa z *ZPO 3*), czyli liczba płaszczy wysyłanych z *ZPO 3* może wynosić maksymalnie 800 szt.
- $4.2.4. \ Trzeba \ wcisnąć \ przycisk \ \textbf{Dodaj}; \ otworzy \ się \ okno \ \textbf{Dodawanie ograniczenia}.$
 - 4.2.4.1. Pole **Odwołanie do komórki**: komórka **J4** (wielkość dostawy do *sklepu 1*).
 - 4.2.4.2. Operator: **=** (równość).
 - 4.2.4.3. Pole Ograniczenie: komórka *D8* (zapotrzebowanie *sklepu 1*),czyli do *sklepu 1* trzeba dostarczyć 630 płaszczy.
- 4.2.5. Należy wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 4.2.5.1. Pole Odwołanie do komórki: komórka J5 (wielkość dostawy do *sklepu 2*).
 4.2.5.2. Operator: = (równość).

4.2.5.3. Pole **Ograniczenie**: komórka *E8* (zapotrzebowanie *sklepu 2*), czyli do *sklepu 2* trzeba dostarczyć 160 płaszczy.

- 4.2.6. Trzeba wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 4.2.6.1. Pole Odwołanie do komórki: komórka J6 (wielkość dostawy do *sklepu 3*).
 4.2.6.2. Operator: = (równość).
 - 4.2.6.3. Pole **Ograniczenie**: komórka *F8* (zapotrzebowanie *sklepu 3*), czyli do *sklepu 3* trzeba dostarczyć 170 płaszczy.

- 4.2.7. Należy wcisnąć przycisk Dodaj; otworzy się okno Dodawanie ograniczenia.
 - 4.2.7.1. Pole Odwołanie do komórki: komórka J7 (wielkość dostawy do sklepu 4).

4.2.7.2. Operator: = (równość).

4.2.7.3. Pole Ograniczenie: komórka G8 (zapotrzebowanie sklepu 4),

czyli do sklepu 4 trzeba dostarczyć 340 płaszczy.

4.3. Następnie należy wcisnąć przycisk **OK**; nastąpi powrót do okna **Parametry dodatku Solver**.

W polu Podlegający ograniczeniom powinny być widoczne wpisy:

\$J\$4 = \$D\$8 \$J\$5 = \$E\$8 \$J\$6 = \$F\$8 \$J\$7 = \$G\$8 \$L\$8 <= \$C\$5 \$N\$8 <= \$C\$6 \$P\$8 <= \$C\$7

4.4. Trzeba jeszcze wcisnąć przycisk Rozwiąż; otworzy się okno Wyniki dodatku Solver.
4.4.1. Na koniec należy wcisnąć przycisk OK.

Solver znalazł rozwiązania (rozwiązanie niejednoznaczne).

Wyniki są zaprezentowane w tabeli:

Wielkość dostaw do sklepów			Wielkość dostaw do sklepów Wielkości wysyłki od producentów					
Numer sklepu [szt.]	Razem Razem	ZPO 1		ZPO 2		ZPO 3		
	[szt.]	koszt [zł]	liczba [szt.]	koszt [zł]	liczba [szt.]	koszt [zł]	liczba [szt.]	koszt [zł]
Sklep 1	630	10 800 zł	180	1 800 zł	450	9 000 zł	0	0 zł
Sklep 2	160	4 800 zł	0	0 zł	0	0 zł	160	4 800 zł
Sklep 3	170	5 100 zł	0	0 zł	0	0 zł	170	5 100 zł
Sklep 4	340	11 200 zł	120	2 400 zł	0	0 zł	220	8 800 zł
Razem	1 300	31 900 zł	300	4 200 zł	450	9 000 zł	550	18 700 zł

Ponieważ podaż płaszczy (1 550 sztuk) przewyższa popyt (1 300 sztuk), to dla zminimalizowania łącznych kosztów transportu i jednocześnie zaspokojenia zapotrzebowania na płaszcze¹:

¹ Wyniki obliczeń z tymi warunkami zadania są zapisane w arkuszu *Zadanie_44a pliku Modele-zadania_3-wyniki.xlsx.*

- *sklep 1* powinien otrzymać 180 sztuk płaszczy z ZPO 1 i 450 z ZPO 2,
- *sklep 2* powinien otrzymać 160 sztuk płaszczy jedynie z ZPO 3,
- *sklep 3* powinien otrzymać 170 sztuk płaszczy tylko z *ZPO 3*,
- *sklep 4* powinien otrzymać 120 płaszczy z ZPO 1 i 220 sztuk z ZPO 3,

Natomiast zakłady odzieżowe:

- *ZPO 1* powinny dostarczyć 180 sztuk płaszczy do sklepu *sklep 1*, 120 płaszczy do *sklepu 4*,
- *ZPO 2* powinny dostarczyć 450 sztuk płaszczy tylko do *sklepu 1*,
- *ZPO 3* powinny dostarczyć 160 sztuk do *sklepu 2*, 170 sztuk do *sklepu 3* i 220 sztuk płaszczy do *sklepu 4*.

Wówczas potrzeby wszystkich sklepów będą w pełni zaspokojone, a łączny koszt wysyłki wszystkich płaszczy będzie kwotą o wielkości 31 900 zł.

Dla lepszego widocznienia obliczonych wartości, formatowaniem warunkowym można wyodrębnić tylko te, które nie są wartościami zerowymi; wówczas Excel sam je znajdzie i wyświetli ciemnoniebieską pogrubioną czcionką.

Dla odpowiedzi na pytanie b)

(zdolność produkcyjna ZPO 2 zmaleje o 250 płaszczy) trzeba:

5. Wpisać nowe dane do tabeli; tabela będzie mieć teraz wygląd:

Wyszczególnienie		Dostawa do sklepów [szt.]	Jednostkowe koszt transportu [zł/szt.]				
			Sklep 1	Sklep 2	Sklep 3	Sklep 4	
Nazwa producenta	ZPO 1	300	10	40	50	20	
	ZPO 2	200 20 60		60	40	60	
	ZPO 3	800	30	30	30	40	
Zapotrzebowanie sklepów [szt.]			630	160	170	340	
Łączna dostawa do sklepów [szt.]			=SUMA(C5:C7)				
Łączne zapotrzebowanie sklepów [szt.]			=SUMA(D8:G8)				

Excel obliczył, że teraz możliwości dostaw do sklepów (1 300 szt.) są równe zapotrzebowaniu na płaszcze (1 300 szt.); więc wszystkie płaszcze będą wysłane od producentów do sklepów.

- Z komórek L4:L7;N4:N7;P4:P7 obliczających liczbę płaszczy należy usunąć dotychczasowe dane,
- 7. Następnie należy uruchomić dodatek **Solver** (karta **Dane** \rightarrow przycisk **Solver**).
 - 7.1. Trzeba zaznaczyć wiersz \$L\$8 <= \$C\$5.
 - 7.1.1. Następnie należy wcisnąć przycisk **Zmień**; otworzy się okno **Zmienianie** ograniczenia.

7.1.1.1. Operator: = (równość),

- czyli z ZPO 1 trzeba wysłać wszystkie płaszcze 300 szt.
- 7.1.1.2. Trzeba jeszcze wcisnąć przycisk **OK**; nastąpi powrót do okna **Parametry dodatku Solver**.
- 7.2. W dalszej kolejności trzeba zaznaczyć wiersz \$N\$8 <= \$C\$6.
 - 7.2.1. Po czym wcisnąć przycisk Zmień; otworzy się okno Zmienianie ograniczenia.
 - 7.2.1.1. Operator: = (równość),
 - czyli z ZPO 2 trzeba wysłać wszystkie płaszcze 200 szt.
 - 7.2.1.2. Trzeba jeszcze wcisnąć przycisk **OK**; nastąpi powrót do okna **Parametry dodatku Solver**.
- 7.3. Analogicznie trzeba zaznaczyć wiersz *\$P\$8 <= \$C\$7*.
 - 7.3.1. Po czym należy wcisnąć przycisk Zmień; otworzy się okno Zmienianie ograniczenia.

7.3.1.1. Operator: = (równość),

- czyli z ZPO 3 trzeba wysłać wszystkie płaszcze 800 szt.
- 7.3.1.2. Należy jeszcze wcisnąć przycisk **OK**; nastąpi powrót do okna **Parametry dodatku Solver**.

Pozostałe parametry pozostawić bez zmian.

W polu Podlegający ograniczeniom powinny być widoczne wpisy:

\$J\$4 = \$D\$8 \$J\$5 = \$E\$8 \$J\$6 = \$F\$8 \$J\$7 = \$G\$8 \$L\$8 = \$C\$5 \$N\$8 = \$C\$6 \$P\$8 = \$C\$7

7.4. Następnie należy wcisnąć przycisk **Rozwiąż**; otworzy się okno **Wyniki dodatku** Solver.

7.4.1. Na koniec wystarczy wcisnąć przycisk OK.

Solver znalazł nowe rozwiązania (rozwiązanie niejednoznaczne).

Wielkość dostaw do sklepów			Wielkości wysyłki od producentów						
Numer sklepu	Razem liczba [szt.]	Razem koszt [zł]	ZPO 1		ZPO 2		ZPO 3		
			liczba [szt.]	koszt [zł]	liczba [szt.]	koszt [zł]	liczba [szt.]	koszt [zł]	
Sklep 1	630	10 900 zł	300	3 000 zł	200	4 000 zł	130	3 900 zł	
Sklep 2	160	4 800 zł	0	0 zł	0	0 zł	160	4 800 zł	
Sklep 3	170	5 100 zł	0	0 zł	0	0 zł	170	5 100 zł	
Sklep 4	340	13 600 zł	0	0 zł	0	0 zł	340	13 600 zł	
Razem	1 300	34 400 zł	300	3 000 zł	200	4 000 zł	800	27 400 zł	

Otrzymane wyniki obrazuje tabela:

Dla zminimalizowania łącznych kosztów transportu i dla zaspokojenia zapotrzebowania na *płaszcze*:

- *sklep 1* powinien otrzymać 300 sztuk płaszczy z ZPO 1, 200 płaszczy z ZPO 2 i 130 płaszczy z ZPO 3,
- *sklep 2* powinien otrzymać 160 sztuk płaszczy jedynie z ZPO 3,
- *sklep 3* powinien otrzymać 170 sztuk płaszczy tylko z ZPO 3,
- *sklep 4* powinien otrzymać 340 sztuk płaszczy jedynie z *ZPO 3*.

Natomiast zakłady odzieżowe:

- *ZPO 1* powinny dostarczyć 300 sztuk płaszczy tylko do *sklep 1*,
- *ZPO 2* powinny dostarczyć 200 sztuk płaszczy tylko do *sklepu 2*,
- *ZPO 3* powinny dostarczyć 130 sztuk płaszczy do *sklepu 1*, 160 sztuk do *sklepu 2*, 170 sztuk do *sklepu 3* i 340 sztuk płaszczy do *sklepu 4*.

Wówczas potrzeby wszystkich sklepów będą w pełni zaspokojone, a łączny koszt wysyłki wszystkich płaszczy będzie kwotą o wielkości 34 400 zł.

Pomimo wysłania do sklepów takiej samej liczby płaszczy (po 1 300 sztuk), ta kwota jest wyższa od poprzedniej (31 900 zł — otrzymanej dla poprzednich założeń tego zadania) dlatego, że do sklepów jest wysyłana zwiększona (o 250 sztuk) liczba płaszczy z zakładów ZPO 3, które mają wyższe od ZPO 2 koszty transportu do sklepów.

8. Można zapisać zmiany w pliku².

² Wyniki obliczeń z tymi warunkami zadania są zapisane w arkuszu *Zadanie_44b pliku Modelezadania_3-wyniki.xlsx*.

PROGRAM PARTNERSKI — GRUPY HELION

1. ZAREJESTRUJ SIĘ 2. PREZENTUJ KSIĄŻKI 3. ZBIERAJ PROWIZJĘ

Zmień swoją stronę WWW w działający bankomat!

Dowiedz się więcej i dołącz już dzisiaj! http://program-partnerski.helion.pl

Excel Solver w praktyce

Zadania ekonometryczne z rozwiązaniami

Poznaj Solvera i skutecznie rozwiązuj problemy!

- Odkryj możliwości dodatku Solver
- Naucz się z niego skutecznie korzystać
- Dowiedz się, jak optymalizować rozwiązania

Solver to dodatek do programu Microsoft Excel sprawiający, że ten doskonały arkusz kalkulacyjny zyskuje możliwość wyznaczania wartości wielu zmiennych decyzyjnych w taki sposób, aby przy zadanych ograniczeniach osiągać określony cel. Narzędzie nadaje się do rozwiązywania niewielkich i średnich problemów optymalizacyjnych i znajduje zastosowanie w ekonomii, finansach, zarządzaniu i planowaniu produkcji przemysłowej.

Jeśli w swojej pracy masz do czynienia z optymalizacją działania przedsiębiorstw, ten zbiór zadań pokaże Ci, jak praktycznie radzić sobie z tego rodzaju wyzwaniami. Dzięki zawartym w nim przykładom nauczysz się maksymalizować zyski, minimalizować czas realizacji działań, optymalizować koszty związane z logistyką, poprawiać gospodarkę materiałową oraz podejmować najlepsze decyzje związane z zarządzaniem środkami trwałymi, a wszystko to za pomocą dodatku Solver!

Praktyczne zadania, szczegółowe opisy rozwiązań, wiedza w zasięgu ręki!

