Helion¥ (pCI Ck'l')

Efektywne zarzadzanie
pamiecig w C++

Praktyczne strategie i techniki tworzenia lekkiego,
bezpiecznego i hiezawodnego oprogramowania

<> PATRICE ROY



Tytut oryginatu: C++ Memory Management: Write leaner and safer C++ code
using proven memory-management techniques

Ttumaczenie: Robert Gérczynski
ISBN: 978-83-289-3323-1

Copyright © Packt Publishing 2025. First published in the English language
under the title ‘C++ Memory Management - (9781805129806)".

Polish edition copyright © 2026 by Helion S.A.

All rights reserved. No part of this book may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including photocopying, recording
or by any information storage retrieval system, without permission from the Publisher.

Wszelkie prawa zastrzezone. Nieautoryzowane rozpowszechnianie catosci lub fragmentu
niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii
metoda kserograficzna, fotograficzna, a takze kopiowanie ksigzki na no$niku filmowym,
magnetycznym lub innym powoduje naruszenie praw autorskich niniejszej publikacji.

Wszystkie znaki wystepujgce w tekscie s3 zastrzezonymi znakami firmowymi
badz towarowymi ich wtascicieli.

Autor oraz wydawca dotozyli wszelkich staran, by zawarte w tej ksigzce informacje
byty kompletne i rzetelne. Nie biorg jednak zadnej odpowiedzialno$ci ani za ich
wykorzystanie, ani za zwigzane z tym ewentualne naruszenie praw patentowych
lub autorskich. Autor oraz wydawca nie ponoszg réwniez zadnej odpowiedzialno$ci
za ewentualne szkody wynikte z wykorzystania informacji zawartych w ksigzce.

Drogi Czytelniku!

Jezeli chcesz oceni¢ te ksigzke, zajrzyj pod adres
helion.pl/user/opinie/efzapa

Mozesz tam wpisa¢ swoje uwagi, spostrzezenia, recenzje.

Helion S.A.

ul. Ko$ciuszki 1c, 44-100 Gliwice

tel. 32 230 98 63

e-mail: helion@helion.pl

WWW: helion.pl (ksiegarnia internetowa, katalog ksigzek)

Printed in Poland.

« Kup ksigzke « Ksiegarnia internetowa
« Pole¢ ksigzke « Lubie to! » Nasza spotecznos¢
+ Ocen ksigzke



https://helion.pl/rt/efzapa
https://helion.pl/rf/efzapa
https://helion.pl/ro/efzapa
https://helion.pl
https://helion.pl/r/4CAKF

Spis tresci I

L0 B8 111 13
0 korektorach merytorycznych .........ccooomicmnimnimnnsnnsrs s 14
Przedmowa .......ccccierimminmninmsesnsss s s s s nan 15
WProWAZENI@ ....coceeriemrimrssnsrinmisssssssssssssssssssssssnssssssassssssssasasssnssssnsssnssssnsases 19

CZESC 1. Pamieé¢ w C+ +

ROZDZIAL 1
Obiekty, wskazniki i referencje .........cccovvemrrcmnissmnsmnssnsss e 25
Wymagania teChniCZNe ........c..uuiiiiiiii e 25
Reprezentacja pamieci W CH 4 oo 26
Obiekty, wskazniki i referencje ........ccccoiiiiiiiiii 26
Zrozumienie podstawowych wiasciwosci obiektOw ...........ccccvvvieiiiiiiiiiiinne. 31
Cykl Zyciowy 0bIektU ...ccoeeeiiiiiiiiiic e 32
Wielkos¢ obiektu, jego wyréwnanie i wypetnienie ..........ccccoveeviieeeennnn 33
Kopiowanie i Przenoszenie ..........cuuvvveeeiiiieiiiieiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 39
TaABIICE .. 48
POASUMOWANIE .ottt e e e e e e reee e e e e e e e anns 49

ROZDZIAL 2
Na co nalezy UWAzZac? .........cccomirmmsmmssmmsnsmsssssnssss s s snssssssssmssssnsas 51
ROZNE rodzaje z1a ..o 52
Zle sformutowany kod, bez wymaganej diagnostyki .............cccccccuveee... 52
Niezdefiniowane zachowanie ...........cccccceiiiiiiiiii e 52
Zachowanie definiowane przez implementacje .......cccccveevviiiciiiienneeennens 53
Nieokreslone zachowanie (niezdefiniowane w dokumentacji) ................ 54
Zasada jednej definiCji .....ccoviiciiiiiie 54
Bfedne zachOwWanie ...........ueiiiiiiiiiie e 55
WVSKAZNIKI ettt e e e e e e e e anne s 55
Zastosowania arytmetyki wskaznikdéw w tablicach .............cccooocniiiniii, 56
Wymienialnos$¢ wskaZnikOw ... 56
Wykorzystanie arytmetyki wskaznikéw wewnatrz obiektu ..................... 57

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

6 Efektywne zarzadzanie pamiecig w C+ +

Manipulowanie tyPami .......ooueiiiiiie e 59
Manipulacja typami poprzez elementy sktadowe unii .......ccccccceveerrnnnnee. 60
Typy intptr tiuintptr t ..o 61
Funkcja std:imemcpy() .oovvveeeeeieei e 62
Szczegdlne przypadki char*, unsigned char* i std::byte* ............cccooee. 63
Funkgcja std::start_lifetime_as<T>() ...oocoeiriiiiiii e 63

POASUMOWAENIE .o e e e e e e e e 64

ROZDZIAL 3
Rzutowanie i kwalifikatory cv ... 65

Wymagania teChNiCZNe ...........ooiiiiiiii e 65

CZYM JESt FZUTOWANIE? .ovveiiiiiiiiiiieeeeeeeeeeeeeee ettt 66

Bezpieczenstwo w systemie typdw — kwalifikatory cv .......ccccvveeerieiiinnnen, 67

RZUTOWANIA W G bbb eeeeeeeeeee 68
Twoj najlepszy przyjaciel (w wiekszosci przypadkéw) — static_cast ........ 69
Sygnat, ze cos$ jest nie tak — dynamic_cast .........ccociiiiii 70
Igranie z bezpieczenstwem — const_cast .......cccccceeeeiiniiiiii 71
+~Uwierz mi, kompilatorze” — reinterpret_cast ........cccccconiiiiiiiiienenninnn. 72
Wiem, ze bity sg poprawne — bit_cast .........ccccceiiiiiii 73
Nieco niezwigzane, ale warte wspomnienia — duration_cast ................. 74
Znienawidzone rzutowanie W stylu C .........ccccoiiiiiiiiiiiiie e 75

[0 Te YU T3 a0 V7= Y o = 76

CZESC 2. Techniki niejawnego
zarzadzania pamiecig

ROZDZIAL 4
Korzystanie z deStruktorow ............cccoccvrmmssmsssssssmsssssssssssssssmsssssssnsssassans 79
Wymagania teChNiCZNe ...........ooiiiiiiii e 80
Destruktory — krotkie podsumowanie ........cccccooiiiiiiiiieinniiiiiee e 80
Zarzadzanie zasobami ...........coeiiiiiiiiiiiiiiiiiie 82
Obstuga wyjatkOw... CZy MOZE NIE? ........eeeiiiiiiiiiiiiiiee e 84
IdIOM RAIL L. 85
RAIl i specjalne funkcje sktadowe CH++ ..oooooviiiiiiiiiiie e 86
Potencjalne pUiapki ........oooooiiiiiiiii e 87
Destruktory nie powinny zgtaszac wyjatkdw ...........ccccevviiii, 87
Poznaj kolejnos¢ niszczenia obiektOW ..........ooccuviiiiiiiiiiiie e 89
Standardowe narzedzia do automatyzacji zarzadzania zasobami ................ 93
unique_ptr<T> ishared ptr<T> ......ccccoooiiiiiiiiiii e 93
lock_guard i scoped_0CK ........cooiiiiiiiiiiiiici 94

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Spis tresci 7

Obiekty STrUMIENIOWE ... 96
vector<T> i iNNE KONTENEIY ....ceeviiiiiiie e 97
POASUMOWANIE ..ot e e e e e e e e e aee e e e e e e e enns 97
ROZDZIAL 5
Korzystanie ze standardowych inteligentnych wskaznikow ................... 99
Wymagania teChNiCZNe .........ccuuviiiiiiiii e 100
Standardowe inteligentne WskazniKi ............ccccccvveeeiiiiciiieeiee e, 100
O wyrazaniu intencji poprzez sygnatury funkcji .......cccccccoviiiiiiieninnnnnn. 102
TYP UNIQUE_ P ettt ettt e e e e e s s e e e e e e e e e aanes 104
Obstuga 0biektOW .......ceeviiiiiiii 105
Obstuga tablic ......covviiiiiiiiiiiiii 107
Niestandardowe funkcje USUWAJCe ........covvviviiiiiiieeeiiiiiiiieee e 109
MAKE _UNIQUE ..ottt 111
Typy shared_ptr i weak prr ... 114
UZytecznos$E | KOSZLY ...oeeeeeiiiiiee i 116
Make Shared() ......eoeeiiiiie e 117
F T olo AT V=T | o) o A 117
Kiedy stosowad nieprzetworzone wskazniki? ...........ccccovveiiiiiiiiiiiiiinnnnnn. 121
POASUMOWANIE .ooieiiii i 122
ROZDZIAL 6
Implementowanie inteligentnych wskaznikow ...........cccccricnninnieninens 123
Wymagania teChNICZNEe .........c.vviiiiiie e e e e 124
Semantyka WIASNOSCI .....oooiiiiiiiiiie 124
Implementacja wiasnej wersji unique_ptr ........ccccceeeeeiiiiiiieeee e 125
SYGNATUIA TYPU oot 125
Specjalne funkcje skladowe ..o 128
Funkcje przypominajace wskazniki .........cccccccciiiiiiiii 129
Implementacja wiasnej, prostej wersji inteligentnego
wskaznika shared ptr ... 131
Kilka stéw o funkcji make _shared() ......ccccccvvvciiiiiiie i 138
Implementacja wskaznika powielajgcego opartego na polityce ................. 139
Wykrywanie za pomocg interfejSOwW ........ccccvvevvveeeeiicciiiiiiee e, 140
Wykrywanie za pomocg CeCh ........oiviiiiiiiiiiii e 142
Wykrywanie za pomocg KONCeptOw ........ccuvveeviiiiiiiiiiiiiiieee e 143
Kilka prostych, ale wciaz przydatnych inteligentnych wskaznikéw ............. 144
Wskaznik non_nUll_ptr ......c.cooiiiiiiiii e 144
TYP ODSEIVEr PEI e 146
POOSUMOWANIE ...eiiiiiiiiie ittt et et e e 147

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

8 Efektywne zarzadzanie pamiecig w C+ +

CZESC 3. Przejmowanie kontroli
(nad mechanizmami zarzadzania pamiecia)

ROZDZIAL 7
Przecigzanie operatorow alokacji pami@cCi .....ccccvsersrerssnrssasssansssnsssassssnns 151
Dlaczego warto przecigzac funkcje alokacji pamieci? ........ccccccovvvinvennnnnn. 152
Krotki przeglad funkgji alokacji pamieci w jezyku C ......coeeeeiiiiiiiiiiiee, 152
Przeglad funkgji alokacji pamieci W CH++ ....oooviiiiiiiiiiiie e 154
Globalne funkcje alokacji .........uueeiiiiiiii e 155
Funkcje alokacji, ktore nie zgtaszajg wyjatkOw ..........coocviiieeiieiiinnnnne. 159

Najwazniejsza funkcjonalnos¢ operator new —

mechanizm placement NEW .........ooeiiiiiiiiiiiie e 162
Funkcje alokacji dla elementéw sktadowych .........ccccooviiiiiieiieeiiiinne, 165
Funkcje alokacji, ktére uwzgledniajg wyréwnanie ..........ccccccceveeeviennnee. 166
Niszczaca funkcja delete ......oooooiviiciiiiiiii e 167
POASUMOWANIE ....c.eiiiiiiiicic e 170

ROZDZIAL 8
Implementacja prostego detektora wyciekow pamieci ..........ccccevieerueen 1m
Wymagania teChNICZNe ...........ooiiiiiiiii e 172
PlaN e ——————————————— 172
Pierwsze podejscie (ktore prawie dziata) ......ccccccvveeiiiiiciiiie e, 176
Klasa singleton Accountant ..........ccccoeeieeiiiiiiiiienee e 176
Implementacja funkcji operator new i NeW[] ......ccccccovvviciiiiinieeeeiiicine, 180
Implementacja funkcji operator delete i delete[] ........coovcvvvieveeeeiiinnnen. 181
Wizualizacja catosCi voovvvvviiiiii 182
Wyszukiwanie (i rozwigzywanie) problemow ..........cccccoviiieiiiineniiieeeee 187
Powrét do naszej implementacji (i wyciggniecie wnioskow) ...................... 190
POASUMOWANIE ......eiiiiiiiiice 191

ROZDZIAL 9
Nietypowe mechanizmy alokacji ......c.cccurmrrmrssmmssmssnmssensssnsssnssssnsssassssns 192
Wymagania teChNICZNE .........uuiviieeiiiiiiiiicie e e e e 192
Mechanizm placement new i sprzet mapowany w pamieci ...............oee... 193
Uproszczenie uzycia wersji nothrow funkcji operator new .............ccccccee.... 196
Brak pamieci i funkcja new _handler ... 201
Standardowy C++ a nietypowe zarzgdzanie pami€ciq ......cccccceeeevvvvvennrnnn. 203
Fikcyjne APl pamieci wspotdzielone] ........ccoeccvviveeeieiiiiiiieeee e 204
Przyktad kodu uzytkownika ........ccccccoiiiiiiiiiii 207
Standardowo wygladajacy odpowiednik kodu uzytkownika ................. 209
POASUMOWANIE ..o 213

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Spis tresci 9

ROZDZIAL 10
Zarzadzanie pamiecia oparte na pulach i inne optymalizacje ............... 215
Wymagania teChNICZNEe ...........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiie e 216
Zarzadzanie pamiecig oparte na pulach .........ccccccoviiiiiii 216
Konkretny przyktad — implementacja oparta na wielkosci ................... 217
Uogodlnienie do SizeBasedArena<T,N> ......ccccocciiiiiiiiiiniieeeniieee e 226
Gdy parametry ulegajg Zmianie ........ccccceeviiiciiiiii e 228
Pule fragmentowane ........c..oooiiiiiiiiiiiie e 229
POASUMOWANIE .oiiiiiiieie e e e e e e e 239

ROZDZIAL 11
Odroczone zwalnianie PaAMI€Ci .....cccuvrerssrrssnmssssssnsssssssnsssanssssssnsssansssnnas 240
Wymagania teChNICZNEe ........cooviiiiiiiiiie e 241
Co oznacza odroczone zwalnianie Pami€Ci? .......cccccoiiiiiiiieiieeenniniiiiieeeenn 241
Odzyskiwanie zasobow (bez finalizacji) pod koniec programu ................... 244
Odzyskiwanie zasobow i finalizacja na koncu programu ............ccccvvveeeeen. 247
Odzyskiwanie zasobow i finalizacja na koncu zasiegu ..........ccccceeviveeeennn 252
POASUMOWANIE oo 258

CZESC 4. Tworzenie konteneréw generycznych

(i troche wiecej)
ROZDZIAL 12
Tworzenie konteneréw generycznych
z jawnym zarzadzaniem Pami€Cia ....cuccrurerrssnmssassssnsssassssnsssnsssassssasssassssnnas 263
Wymagania teChNIiCZNe ........coouiiiiiiiiic e 264
Implementacja wiasnej alternatywy dla vector<T> ........cccooiiiiiiiiinnnnnnn. 265
Wybor reprezentacji dla kontenera z ciggtymi elementami ................... 266
Implementacja Vector<T> ... 267
Implementacja wtasnej alternatywy dla forward _list<T> .........ccocciiieeen. 277
Wybor reprezentacji dla kontenera opartego na weztach ..................... 278
Implementacja ForwardList<T> .......ccccccciiiiiiiiiiiee 278
Efektywniejsze zarzadzanie pami€cia .........ccccvveveieeeiiiciiiieie e, 284
Znacznie wydajniejszy typ Vector<T> . ..cccocciieiiiiiiiieeee e 286
Korzystanie z niskopoziomowych narzedzi standardowych .................. 287
Statfe sktadowe lub referencyjne a std:launder() ......ccccoeevviciiennnnnnn, 295
POASUMOWANIE .ot e e e e e e neeeeeeaeeeas 298

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

10 Efektywne zarzadzanie pamiecia w C+ +

ROZDZIAL 13
Tworzenie konteneréw generycznych

z niejawnym zarzadzaniem pami€Ciaq .........ccuersrmrssnnisnmssnmsssssssssssssssannas 299
Wymagania teChNICZNE .........uuiiiiieiiiiiiiiicce e e 300
Dlaczego jawne zarzadzanie pamiecia

komplikuje naszg implementacje? .......cccocvieee i 300

Niejawne zarzadzanie pamiecig za pomocg inteligentnego wskaznika ...... 301

Wptyw na prostg implementacje Vector<T> ........ccccceniiin, 302

Wptyw na zaawansowang implementacje Vector<T> ...........cccccvvveeenn. 305

Skutki przeprojektowania Klasy .........ccccoeiiiiiiiiiiiie e 310

Uogolnienie do FOrwardList<T>7? .........ccccoeiiiiiiiiieeiiiiiiieee e 311

Proba zdefiniowania kazdego wezta jako odpowiedzialnego

23 SWOJEJO NASTEPCE ..ieieiiiiiiiie ettt a e e 311
Proba zdefiniowania wskaznika head jako odpowiedzialnego

Za POzZOostale WEZIY ..o 315

POASUMOWAENIE .oiiiiiiiiiiiii e e e e e e e 317

ROZDZIAL 14

Tworzenie konteneréw generycznych z obstuga alokatoréw ................ 318
Wymagania teChNiCZNe ........ocuviiiiiiiii e 319
Dlaczego aloKatory? ...t 319
KIasyczne alokatory ... 320

o0 Lo I G e I SR 320
Tradycyjne alokatory we wspoétczesnych standardach ........................... 342
Zarzadzanie tradycyjnym cyklem zyciowym alokatora ............cccceeeennnne. 345
Problemy z tradycyjnymi alokatorami ..........ccceeeeiiiiiiiiiii, 349
Polimorficzne alokatory zasobow pami€ci ...........ccccvvveeiieeiiiiiciiiiceee e, 350
Zagniezdzone alokatory ..........cccccviiiiiiiiiii 352
Alokatory i zbieranie danych .........ccccoiiii 353
Zalety i KOSZEY oooeieeiieeee e 355
POASUMOWANIE ... e e e e e e e 356

ROZDZIAL 15

Wspotczesne zagadnienia ........ccccuemvremrssmmssesmssssssmsssssssssssssssssssssssssssssassas 357
Wymagania technNiCzZNe .........ooovvvviiiiiiiiiiiiiii 358
Rozpoczynanie cyklu zyciowego obiektu bez konstruktoréw ..................... 358
Prosta relokacja ........eeviiiiiiiiiiii 362
Funkcje alokacji i zwalniania pamieci, ktére znajg typy ........oocccvvveeeeeeennnns 365
POASUMOWANIE ... e e 368

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Spis tresci 11

DODATEK
Co powinienes WIedziec€? .........ccccurmmrmrismmssnsssssmssmssssnsssnsssssssssssssssssssasasnss 369
Struktury 1 KIasy ....oooovvviiiii 369
SEAIISIZE T e 371
OPErator SIZEOT ...coiiiei e 371
T o TP PPUPTT 371
Niezdefiniowane zachowanie ...........ccccccoviiiiiiiiii e 372
L@/l 0V 4/ oY 11V 373
Cechy std::true_type i std::false_type ...cccooeviiiiiiii 373
Cecha std::conditioNal <B,T,F > oo, 374
Y o o V2 {02 Y 376
Funktory (obiekty funkcyjne) i wyrazenia lambda ..........cccccceveeiiiiiiininnnnn. 377
PrZYJAci€le ...ooiiieiieie e 378
OPErator deCItYPE .ocoi e 381
Idealne Przekazywanie ... 382
Wzorzec projektowy singleton ..........cooocciiiiiiree i 384
Tworzenie egzemplarza podczas uruchamiania programu .................... 385
Inicjalizacja w trakcie pierwszego wywofania ..........ccccoeccvvieereeeeiiicnnne. 387
Funkcja std::exchange() ....ooooeeiiieiiiiiiie e 388

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

12 Efektywne zarzadzanie pamiecia w C+ +

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdziat

Na co nale2y uwazacé? | 2

Zdecydowates sie przeczytac ksiazke o zarzadzaniu pamiecig w C++ i jeste$ gotowy za-
réwno na poznanie podej$¢ wysokopoziomowych, jak i na ,ubrudzenie rak”, aby uzy-
skac precyzyjna kontrole nad procesem zarzadzania pamiecia. Swietny plan!

Poniewaz bedziesz tworzy¢ kod zaréwno bardzo wysokiego, jak i bardzo niskiego po-
ziomu, musimy upewnic sie, ze jeste$§ Swiadomy pewnych kwestii. Dzieki temu unik-
niesz problemoéw i nie bedziesz tworzy¢ kodu, ktéry wydaje sie funkcjonowac, ale
w rzeczywistosci nie dziata, przynajmniej nie w sposéb przenosny.

W tym rozdziale zwrécimy uwage na niektére aspekty programowania w C++, ktore
bedg istotne w catej ksiazce, ale z ktérymi nalezy obchodzic sie ostroznie. Wprawdzie
moze to wygladac jak (bardzo) krétkie kompendium ztych praktyk lub zacheta do wpa-
dania w tarapaty, ale potraktuj to raczej jako sposoby na dobre wykorzystanie nieco
niebezpiecznych lub trudnych funkcji jezyka. Uzywasz C++, masz znaczng swobode
wyrazu i dostep do funkgji, ktore sg przydatne, jesli dobrze je znasz i rozumiesz.

Chcemy tworzy¢ kod, ktéry jest czysty i wydajny, oraz ksztattowa¢ odpowiedzialnych
programistéw. Sprébujmy osiagnac to razem.

W tym rozdziale oméwimy nastepujace zagadnienia:

B Sposoby, w jakie mozna wpas$¢ w ktopoty z kodem C++. Istniejg kwestie, ktérych
kompilator nie moze wiarygodnie zdiagnozowac, a takze sytuacje, w przypadku
ktorych standard C++ nie okre$la, co sie stanie. Tworzenie kodu, ktéry robi
takie rzeczy, to przepis na katastrofe — lub co najmniej zaskakujgce czy
nieprzeno$ne zachowanie.

B W szczeg6lnosci przyjrzymy sie, jak mozna doprowadzi¢ do problemoéw
podczas pracy ze wskaznikami. Poniewaz ta ksigzka omawia zarzadzanie
pamiecia, bedziemy czesto uzywac wskaznikéw i zwigzanej z nimi arytmetyKki.
Umiejetno$¢ rozréznienia miedzy wtasciwym i niewtasciwym ich uzyciem
bedzie bardzo cenna.

B Na koniec omo6wimy, jakie rodzaje konwersji typéw mozemy wykonywac bez
uciekania sie do rzutowania (to bedzie tematem nastepnego rozdziatu)

i dlaczego, wbrew powszechnemu przekonaniu, rzadko jest to dobry pomyst.

Naszym og6lnym celem bedzie nauczenie sie, czego nie powinni$my robi¢ (mimo ze
czasami bedziemy wykonywa¢ manewry, ktore to przypominaja) i unikanie tych prak-
tyk w przysztosci. Ponadto powinienes zrozumie¢, dlaczego postepujemy w taki sposéb.
W kolejnych rozdziatach skoncentrujemy sie na tym, co powinnismy robic i jak robi¢ to
dobrze!

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

52 Efektywne zarzadzanie pamiecia w C+ +

Rozne rodzaje zta

Zanim przejdziemy do omoéwienia konkretnych praktyk wymagajgcych szczegélnej
uwagi, warto przyjrzec sie gtéwnym kategoriom ryzyka, na jakie mozemy sie natknac,
jesli tworzony przez nas kod nie przestrzega zasad jezyka. Z kazda taka kategorig wiaze
sie pewien rodzaj nieprzyjemnosci, ktérych powinnismy unikac.

Zle sformutowany kod, bez wymaganej
diagnostyki

Niektore konstrukcje w jezyku C++ okre$lane sg jako zle sformutlowane, bez wyma-
ganej diagnostyKi (ang. ill-formed, no diagnostic required, IFNDR). W standardzie jezyka
czesto mozna natrafi¢ na sformutowania w stylu ,jesli [...], program jest Zle sformuto-
wany, bez wymaganej diagnostyki”. Gdy co$ jest IFNDR, oznacza to, Ze nasz program
jest uszkodzony. Wprawdzie moga wystapi¢ niepozadane skutki, ale kompilator nie
jest zobowigzany do informowania nas o nich (czasami kompilator nie ma wystarcza-
jacych informacji, aby zdiagnozowa¢ problematyczng sytuacje).

Naruszenia zasady jednej definicji (ang. one definition rule, ODR), do ktérych wroé-
cimy w dalszej cze$ci tego rozdziatu, zaliczajg sie do kategorii IFNDR. Istniejg jednak
inne przypadki, takie jak posiadanie obiektu globalnego o ré6znych wymaganiach wy-
réwnania (za pomoca alignas) w réznych jednostkach translacji (zasadniczo réznych
plikach zrédtowych) lub zdefiniowanie konstruktora, ktéry deleguje do samego siebie
bezposrednio lub posrednio. Oto przyktad:
class X {
public:
/I #0 deleguje do #1, ktéry deleguje do #0, ktdry...
X(float x) : X{ static_cast<int>(x) } { //#0

}
X(int n) : X{ n+ 0.5f } { //#1

}
bs
int main() {}
Warto zauwazy¢, ze kompilator moze wyswietli¢ komunikat diagnostyczny, ale nie jest
to wymagane. Nie chodzi o to, ze kompilatory s3g leniwe — w niektérych przypadkach
moga nawet nie by¢ w stanie dostarczy¢ informacji diagnostycznych! Dlatego nalezy
uwazac, aby nie tworzy¢ kodu, ktéry prowadzi do sytuacji [IFNDR.

Niezdefiniowane zachowanie

W poprzednim rozdziale wspomniatem o tzw. niezdefiniowanym zachowaniu (ang.
undefined behavior, UB). Przez programistéw C++ czesto jest ono postrzegane jako zro-
dto probleméw i bélu gtowy, ale odnosi sie do kazdego zachowania, dla ktérego stan-
dard C++ nie naktada zadnych wymagan. W praktyce oznacza to, ze jesli utworzysz kod,
ktéry zawiera niezdefiniowane zachowanie, wéwczas nie masz pojecia, co sie stanie
podczas wykonywania programu (przynajmniej jesli dazysz do otrzymania wzglednie

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdziat 2 ® Na co nalezy uwaza¢? 53

przenosnego kodu). Klasyczne przyktady niezdefiniowanego zachowania obejmuja de-
referencje wskaznika nu11 lub niezainicjalizowanego — jesli to zrobisz, bedziesz mie¢
powazne problemy.

Z perspektywy kompilatoréw niezdefiniowane zachowanie nie powinno wystepowacé
(kod przestrzegajacy zasad jezyka nie prowadzi do UB). Z tego powodu kompilatory
przeprowadzaja ,optymalizacje woko6t” kodu zawierajacego niezdefiniowane zacho-
wanie, co moze prowadzi¢ do zaskakujacych efektow: usuniecie testéw i gatezi, opty-
malizacja petli itp.

Efekty niezdefiniowanego zachowania maja tendencje do lokalno$ci. Na przyktad w po-
nizszym fragmencie kodu istnieje test sprawdzajacy, przed uzyciem *p w jednym przy-
padku, czy p nie ma warto$ci null, ale istnieje co najmniej jeden dostep do *p, ktéry nie
jest sprawdzany. Ten kod jest uszkodzony (niesprawdzony dostep do *p to przyktad
niezdefiniowanego zachowania), wiec kompilator moze go przepisac¢ w taki sposob, ze
wszystkie testy sprawdzajgce, czy p nie ma wartos$ci null, zostang usuniete. W koncu,
gdyby p miato postac nullptr, to oznacza, Ze szkoda zostala juz wyrzadzona. Zatem kompi-
lator ma prawo zatozy¢, ze programista przekazat do funkcji wskaznik inny niz nu11!
int g(int);
int f(int *p) {
if(p !'= nullptr)
return g(*p); //w porzqdku, wiemy, ze p ma wartos¢ innq niz null
return *p; //ups, jezeli p == nullptr, wéwczas mamy niezdefiniowane zachowanie

}

W tym przypadku caty kod funkgcji f () mdgtby zostac przepisany przez kompilator jako
return g(*p), za$ polecenie return *p staloby sie nieosiggalnym kodem.

Potencjalne niezdefiniowane zachowanie kryje sie w r6znych miejscach jezyka, w tym
w przepelnieniu liczb catkowitych ze znakiem, dostepie do elementéw tablicy poza jej
granicami, wy$cigach danych itd. Trwaja ciagte wysitki, ktére maja na celu zmniejsze-
nie liczby potencjalnych przypadkéow niezdefiniowanego zachowania (do tego zadania
zostata nawet powotana specjalna grupa robocza SG12), ale prawdopodobnie pozosta-
nie ono czes$cig jezyka w dajacej sie przewidzie¢ przysztosci i musimy by¢ tego Swiadomi.

Zachowanie definiowane przez implementacje

Niektdre fragmenty standardu podlegajg tzw. zachowaniu definiowanemu przez im-
plementacje, czyli zachowaniu, na ktére mozna liczy¢ w przypadku konkretnej plat-
formy. Jest to zachowanie, ktére Twoja platforma powinna udokumentowad, ale ktore
nie jest gwarantowane jako przeno$ne na inne platformy.

Zachowanie definiowane przez implementacje wystepuje w wielu sytuacjach i obejmuje
obszary takie jak limity definiowane przez implementacje: maksymalna liczba zagniez-
dzonych nawiaséw, maksymalna liczba etykiet case w poleceniu switch, rzeczywista
wielkos¢ obiektu, maksymalna liczba wywotan rekurencyjnych w funkgcji constexpr, liczba
bitéw w bajcie itd. Inne dobrze znane przypadki zachowania definiowanego przez im-
plementacje to liczba bajtow w obiekcie typu int lub to, czy typ char jest ze znakiem,
czy bez znaku.

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

54 Efektywne zarzadzanie pamiecia w C+ +

Wprawdzie zachowanie definiowane przez implementacje samo w sobie nie jest Zré-
dtem probleméw, ale moze okazac sie ktopotliwe, jesli dazy sie do otrzymania przeno-
$nego kodu, a jednocze$nie opiera sie na pewnych nieprzeno$nych zatozeniach. Czasami
warto jawnie wyrazi¢ swoje zatozenia w kodzie za pomoca static_assert, gdy zatoze-
nie moze by¢ zweryfikowane w czasie kompilacji. Ewentualnie za pomoca podobnych
mechanizmoéw, ktére dziatajg w czasie wykonania, aby zda¢ sobie sprawe — zanim be-
dzie za pdZno — ze te zalozenia sg btedne dla danej platformy docelowe;j.

Spédjrz na przedstawiony tutaj kod funkcjimain():
int main() {
// w kodzie przyjeto zatozenie, ze wielko$¢ typu int wynosi 4 bajty,
// to nie jest przyktad przenosnego zatoZenia
static_assert(sizeof(int)==4);
// kod zostanie skompilowany tylko wtedy, gdy warunek jest prawdziwy...
}

0 ile nie masz pewnosci, ze Twdj kod nigdy nie bedzie musiat by¢ przenoszony na inng
platforme, staraj sie jak najrzadziej polega¢ na zachowaniu, ktére pozostaje zalezne od
implementacji. Jesli jednak musisz to zrobi¢, upewnij sie o zweryfikowaniu takich sy-
tuacji (najlepiej za pomocg wywotania static_assert, a jesli to niemozliwe, to w czasie
wykonania) i ich odpowiednim udokumentowaniu. Takie podejScie pomoze unikng¢
nieprzyjemnych niespodzianek w przysztosci.

Nieokreslone zachowanie
(niezdefiniowane w dokumentacji)

Podczas gdy zachowanie zdefiniowane w implementacji jest nieprzenosne, ale udoku-
mentowane dla danej platformy, zachowanie nieokreslone to takie, ktére nawet dla po-
prawnie napisanego programu z prawidtowymi danymi zalezy od implementacji, ale
nie musi by¢ udokumentowane.

Niektore przypadki nieokreslonego zachowania obejmuja stan obiektu po przeniesie-
niu (okreslany jako poprawny, ale nieokreslony, wiec bardziej chodzi o nieokreslony
stan niz zachowanie), kolejnos$¢ obliczania podwyrazen w wywotaniu funkcji, czyli czy
f(g(),h()) najpierw obliczy g() czy h(), wartosci w nowo przydzielonym fragmencie
pamieci itp. Ten ostatni przyktad jest interesujacy dla naszych rozwazan, poniewaz
wersja robocza (debug) programu moze wypetni¢ nowo przydzielone fragmenty pa-
mieci rozpoznawalnym wzorem bitowym, aby pomdc w procesie debugowania. Z kolei
zoptymalizowana wersja tego samego narzedzia moze pozostawi¢ poczatkowe bity
nowo przydzielonego fragmentu pamieci ,niezainicjalizowane”, wraz z bitami, ktére
mialy w momencie alokacji, aby w ten spos6b poprawi¢ wydajnos¢.

Zasada jednej definicji

Zasade jednej definicji mozna przedstawi¢ nastepujaco: w jednostce translacji moze
istnie¢ tylko jedna definicja kazdego ,elementu” (funkcji, obiektu w zakresie, wylicze-
nia, szablonu itp.), chociaz moze by¢ wiele deklaracji tego elementu. Rozwazmy naste-
pujacy fragment kodu:

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdziat 2 ® Na co nalezy uwaza¢? 55

int f(int); //deklaracja

int f(int n); //toréwniez jest deklaracja

int f(int m) { return m; } //definicja

// int flint) { return 3; } // nie wolno tak zrobi¢ (ztamanie zasady jednej definicji)

W C++ unikanie naruszen zasady jednej definicji jest bardzo wazne, poniewaz te ,zto-
sliwosci” moga umkna¢ uwadze kompilatora i wpas¢ w kategorie IFNDR. Na przyktad
ze wzgledu na oddzielng kompilacje plikdw Zréddtowych, jezeli plik nagtéwkowy zawiera
definicje funkcji nieosadzonej, bedzie ona powielana w kazdym pliku Zrédtowym,
ktéry dotgcza ten sam plik nagtéwkowy. W efekcie kazda kompilacja moze zakonczy¢
sie sukcesem, za$ fakt istnienia wielu definicji tej samej funkcji w jednym projekcie
moze by¢ odkryty dopiero pézZniej (na etapie linkowania) lub wrecz pozosta¢ niewy-
kryty, co z kolei spowoduje chaos.

Btedne zachowanie

Trwajgce prace zwiazane z zapewnieniem bezpieczenistwa w C++ doprowadzity do
dyskusji nad nowym rodzajem ,ztosliwosci”, ktéra roboczo zostata nazwana btednym
zachowaniem (ang. erroneous behavior). Ta nowa kategoria ma obejmowac sytuacje,
ktore w przesztosci mogty by¢ traktowane jako niezdefiniowane zachowanie, ale dla
ktérych mozliwe bytoby przeprowadzenie diagnostyki i zapewnienie dobrze zdefinio-
wanego zachowania. Wprawdzie zachowanie to nadal bytoby niepoprawne, ale btedne
zachowanie w pewien sposéb ograniczatoby jego konsekwencje. Musze w tym miejscu
dodac¢, ze w chwili powstawania ksigzki prace nad koncepcja btednego zachowania s3
w toku, a ta nowa funkcjonalno$¢ jezyka moze pojawi¢ sie w standardzie C++26.

Jednym z przewidywanych zastosowan dla btednego zachowania jest odczyt niezaini-
cjalizowanej zmiennej, w przypadku ktérego implementacja mogtaby (ze wzgledéw
bezpieczenstwa) zapewnic stalag wartos¢ dla odczytywanych bitéw. Twoércy implemen-
tacji beda zachecani do diagnozowania btedu koncepcyjnego, ktéry pojawia sie na sku-
tek odczytu takiej zmiennej. Innym przypadkiem zastosowania jest sytuacja, gdy progra-
mista zapomni o zwrdceniu wartos$ci z operatora przypisania dla typu innego niz void.

Skoro przyjrzeliSmy sie juz podstawowym ,rodzinom” nieprzyjemnosci, ktére moga
dotkna¢ nasze programy, jesli nie bedziemy ostrozni, teraz mozemy zagtebic sie w wy-
brane z najwazniejszych obszaréw, ktére mogg przysporzy¢ nam ktopotéw. Zobaczmy,
czego powinnismy unikac.

Wskazniki

W poprzednim rozdziale oméwitem wskazniki w C++ pod katem tego, co reprezentujg
i co oznaczaja. Ponadto wyjas$nitem, czym jest arytmetyka wskaznikéw i jakie daje nam
mozliwos$ci. Teraz przyjrzymy sie praktycznym zastosowaniom tej arytmetyki, za-
réwno wlasciwymi, jak i niewtasciwymi przypadkami uzycia tego niskopoziomowego
(ale czasami cennego) narzedzia.

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

56 Efektywne zarzadzanie pamiecia w C+ +

Zastosowania arytmetyki wskaznikow w tablicach

Arytmetyka wskaznikow to przydatne, ale ostre narzedzie, ktdrego tatwo naduzyc.
W przypadku zwyktych tablic nastepujace dwie petle, oznaczone jako A i B, dziatajag
doktadnie tak samo:
void f(int);
int main() {
int vals[]{ 2,3,5,7,11 };
enum { N = sizeof vals / sizeof vals[0] };
for(int i = 0; i != N; ++i) //A
f(vals[il);
for(int *p = vals; p != vals + N; ++p) //B
T(*p);
}
Mozesz sie zastanawiac nad fragmentem vals + Nw petli B— to jest poprawny (i idio-
matyczny) kod C++. Istnieje mozliwo$¢ obserwowania wskaznika tuz za koncem tablicy,
mimo Ze nie wolno wéwczas odczytywaé wskazywanej przez niego wartos$ci. Standard
gwarantuje, zZe ten konkretny adres tuz za koncem tablicy jest dostepny dla programu.
Jednak nie ma takiej gwarancji dla kolejnego adresu, wiec zachowaj ostroznos¢!

Dopdki przestrzegasz zasad, mozesz uzywac¢ wskaznikéw do poruszania sie w przéd
iw tyt w obrebie tablicy. Jesli jednak przekroczysz granice i uzyjesz wskaznika, aby
wyj$¢ poza jeden element za koncem tablicy, wkroczysz na teren niezdefiniowanego
zachowania. Oznacza to, ze mozesz prébowac uzyskac dostep do adresu, ktéry nie znaj-
duje sie w przestrzeni adresowej Twojego procesu.

int arr[10]{ }; // wszystkie elementy sq zainicjalizowane z wartosciq zero

int *p = &arr[3];

p += 4; assert(p == &arr[7]);

--p; assert(p == &arr[6]);

p += 4; //to wciqz akceptowalne, o ile nie sprébujesz uzyskac¢ dostepu do *p

++p; // niezdefiniowane zachowanie, brak gwarancji dziatania zgodnie z oczekiwaniami

Wymienialnos¢ wskaznikow

Standard C++ definiuje, co oznacza, Ze jeden obiekt jest wymienialny wskaznikowo
(ang. pointer-interconvertible) z innym. Ta wymienialno$¢ oznacza, ze wskaznika pro-
wadzacego do pewnego obiektu mozna uzy¢ jako wskaznika do drugiego obiektu, za-
Zwyczaj poprzez rzutowanie reinterpret_cast (dokladniej oméwimy je w nastepnym
rozdziale), poniewaz majg ten sam adres. Ogélnie rzecz biorac, obowigzujg nastepujace
zasady:

B (Obiekt jest wymienialny wskaznikowo sam ze soba.

B Unia jest wymienialna wskaznikowo ze swoimi elementami sktadowymi
danych, a takze z ich pierwszymi elementami sktadowymi danych, jesli s3 to
typy ztozone.

B 7 pewnymi ograniczeniami x oraz y sg wzajemnie wymienialne wskaznikowo,
jesli jeden z nich jest obiektem, a drugi jest tego samego typu co pierwszy
niestatyczny sktadnik danych tego obiektu.

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdziat 2 ® Na co nalezy uwaza¢? 57

W kolejnym fragmencie kodu znajduje sie kilka przyktadéw:

struct X { int njy };

struct Y : X {};

union U { X x; short s; };

int main() {
X X3
Yy
U u;
// element x jest wymienialny wskaZnikowo z x
// element u jest wymienialny wskazZnikowo z u.x
// element u jest wymienialny wskaZnikowo z u.s
// element y jest wymienialny wskaznikowo z y.x

}

Jesli probujesz uzy¢ operatora reinterpret _cast w sposob, ktéry nie przestrzega zasad
konwersji wskaznikéw, Twdj kod jest formalnie niepoprawny i nie ma gwarancji, ze
bedzie dziatat w praktyce. Nie réb tego.

W zaprezentowanych przyktadach kodu bedziemy czasami korzysta¢ z wtasciwosci
konwersji wskaznikéw. Pierwszy taki przyktad znajduje sie juz w nastepnym punkcie.

Wykorzystanie arytmetyki wskaznikéw
wewnatrz obiektu

Arytmetyka wskaznikow wewnatrz obiektu jest rowniez dozwolona w C++, cho¢ na-
lezy zachowac ostroznos$¢ przy jej stosowaniu (wykorzystaj odpowiednie rzutowania,
ktére oméwimy w nastepnym rozdziale, i upewnij sie, Ze operacje arytmetyczne na
wskaznikach sg wykonywane prawidtowo).

Na przyktad wprawdzie ponizszy kod jest poprawny, ale to nie posta¢, do ktérej stoso-
wania nalezy dgzy¢ (nie ma sensu i wykonuje zadania w niepotrzebnie skomplikowany
sposéb, choc¢ jest dozwolony i nie powoduje szkod):

struct A {
int a;
short s;

}s

short * f(A &a) {
// wymienialnos¢ wskaznikowa w dziataniu!
int *p = reinterpret _cast<int*>(&a);
ptt;
return reinterpret_cast<short*>(p); //dozwolone, cho¢ w ramach

// tego samego obiektu

}

int main() {
A a;
short *p = f(a);
*p = 3; //poprawnie, z formalnego punktu widzenia

}

W tej ksigzce nie bedziemy naduzywac tego aspektu jezyka C++, ale musimy by¢ swia-
domi jego istnienia, aby tworzy¢ poprawny kod niskiego poziomu.

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

58 Efektywne zarzadzanie pamiecia w C+ +

Réznice miedzy wskaznikiem i adresem

W celu wzmocnienia bezpieczenstwa sprzetu i oprogramowania prowadzone sg prace
nad architekturami sprzetowymi, ktére moga zapewnié forme ,,0znaczania wskaz-
nikdw tagami”, co z kolei umozliwitoby miedzy innymi sledzenie przez sprzet zrédta
pochodzenia wskaznikéw. Dwa znane przyktady tego rodzaju architektury to CHERI
(https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf?link_from_packtlink

=yes) oraz Memory Tagging Extensions — MTE (Linux: https://docs.kernel.org/
next/arch/arm64/memory-tagging-extension.htmi?link_from_packtlink=yes, Android:
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_
Memory_Tagging_Extension_Whitepaper.pdf i https://source.android.com/docs/
security/test/memory-safety/arm-mte?link_from_packtlink=yes, Windows: https://
raw.githubusercontent.com/microsoft/MSRC-Security-Research/master/papers/2020/
Security%20analysis%200f%20memory%20tagging.pdf?link_from_packtlink=yes).

Aby skorzystac z takich rozwigzan sprzetowych, jezyk programowania musi roz-
réznia¢ miedzy koncepcjami niskopoziomowych adreséw i wysokopoziomowych
wskaznikow, poniewaz te drugie mogg uwzgledniad fakt, ze wskaznik to cos wiecej
niz tylko lokalizacja w pamieci. Jesli kod koniecznie musi poréwnywac niezwigzane
ze sobg wskazniki w celu ich uporzadkowania, wéwczas mozna je rzutowac na
std::intptr_t lub std::uintptr_t i poréwnywac wartosci liczbowe zamiast faktycznych
wskaznikow. Warto zauwazy¢, ze obstuga tych dwéch typéw przez kompilator
jest opcjonalna, cho¢ wszystkie najwazniejsze kompilatory oferujg te mozliwosc.

Wskaznik null

Koncepcja wskaznika pustego (ang. null pointer) jako rozpoznawalnej wartosci dla
wskaznikéw, ktore nie prowadza do zadnej prawidlowej lokalizacji, siega czaséw
C.A.R. Hoare’a. W jezyku C, poprzez makro NULL, ten wskaZnik byt poczatkowo repre-
zentowany jako char* o wartos$ci 0, nastepnie jako void* o warto$ci 0, natomiast w C++
po prostu jako warto$¢ 0, poniewaz konstrukcje takie jak int *p = NULL; z typowanym
NULL byty dozwolone w jezyku C, ale juz nie w C++. Wynika to z bardziej rygorystycz-
nego systemu typéw w C++. Warto zauwazy¢, ze wskaznik o wartosci 0 nie oznacza
»wskazuj na adres zero”, poniewaz ten adres sam w sobie jest catkowicie poprawny
i jako taki jest uzywany na wielu platformach.

W C++ preferowanym sposobem wyrazania wskaznika pustego jest nullptr, obiekt
typu std::nullptr_t, ktéry konwertuje sie na wskazniki dowolnego typu i zachowuje
sie zgodnie z oczekiwaniami. Rozwigzuje to w C++ wybrane dtugotrwate problemy z li-
teratem 0, takie jak:

int f(int); //#0
int f(char*); //#1
int main() {
int n = 3;
char c;
f(n); //wywotuje #0
f(&c)s // wywotuje #1
f(0); // nigiednoznaczne przed wprowadzeniem standardu C++11,
/I natomiast poczgwszy od C++11, wywoluje #0
f(nullptr); // tylko poczgwszy od standardu C++11, jednoznacznie wywofuje #1

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdziat 2 ® Na co nalezy uwaza¢? 59

Nalezy pamieta¢, ze nullptr nie jest wskaznikiem — to jest obiekt niejawnie konwer-
towany na wskaznik. Z tego powodu cecha std: :is_pointer_v<nullptr>zwraca warto$¢
false, za$ C++ oferuje oddzielng ceche o nazwie std::is null_pointer<T>przeznaczong
do statycznego sprawdzania, czy T jest typu std::nullptr_t, czy tez nie (z uwzglednie-
niem const ivolatile).

Odwotywanie sie do wskaznika pustego prowadzi do niezdefiniowanego zachowania,
podobnie jak w przypadku wskaznika niezainicjalizowanego. Celem uzywania nullptr
w kodzie jest uczynienie tego stanu rozpoznawalnym: nullptr to wyraznie okres$lona
warto$¢, podczas gdy niezainicjalizowany wskaznik moze mie¢ dowolng warto$c.

W jezyku C++ (w przeciwienstwie do C) operacje arytmetyczne na wskazniku pustym
sg dobrze zdefiniowane... o ile dodajemy do niego zero. Innymi stowy: dodanie zera do
wskaznika zerowego pozostaje w ramach poprawnego zachowania, ale dodanie czego-
kolwiek innego moze prowadzi¢ do nieprzewidywalnych efektéw. Istnieje konkretny
zapis dotyczacy tego w standardzie C++ (https://eelis/c++draft/expr.add#4.1). Oznacza
to, Ze ponizszy kod jest poprawny: w przypadku pustej tablicy wywotanie begin()
zwraca nullptr, natomiast size() zwraca zero, wiec funkcja end() w praktyce oblicza
warto$¢ nullptr+0, co jest zgodne z regutami.
template <class T> class Array {
T *elems = nullptr; //wskaznik do poczqtku
std::size_t nelems = 0; //liczba elementéw
public:
Array() = default; //=pusta tablica
// ..

auto size() const noexcept { return nelems; }

// uwaga: wartoscig zwrotnq moze by¢ nullptr

auto begin() noexcept { return elems; }

auto end() noexcept { return begin() + size(); }

}s

Do tego przyktadu z tablicami powrdcimy bardziej szczegétowo w rozdziatach 12., 13.
i 14. Pomoze on omo6wic kilka istotnych aspektow efektywnego zarzadzania pamiecia.
Na razie przyjrzyjmy sie innemu Zrédtu ryzykownych operacji programistycznych.

Manipulowanie typami

Kolejnym obszarem, na ktérym programista C++ moze wpas¢ w tarapaty, jest tzw. ma-
nipulowanie typami (ang. type punning). Przez manipulacje typami rozumiemy tech-
niki, ktére w pewnym stopniu obchodza system typow jezyka. Uznanym narzedziem
przeznaczonym do tego celu sg operacje rzutowania, poniewaz pozostaja one jawne
w kodzie Zrédtowym i (poza rzutowaniem w stylu C) wyrazajg intencje konwersji, ale
ten temat zastuguje na osobny rozdziat (nastepny, jesli sie nad tym zastanawiasz).

W tym podrozdziale przyjrzymy sie innym sposobom manipulacji typami, zaréwno
tym zalecanym, jak i tym, ktérych nalezy unikac.

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

60 Efektywne zarzadzanie pamiecia w C+ +

Manipulacja typami poprzez
elementy sktadowe unii

Unia to typ, w ktérym wszystkie elementy sktadowe znajduja sie pod tym samym ad-
resem. Wielko$¢ unii jest rowna wielko$ci jej najwiekszego elementu sktadowego, zas
wyréwnanie unii jest najscislejszym wyréwnaniem sposrod jej elementow.

Rozwazmy nastepujacy fragment kodu:

struct X {

char c[5]; short s;
boxs
// jeden bajt dopetnienia miedzy x.c i x.s
static_assert(sizeof x.s == 2 && sizeof x == 8);
static_assert(alignof(x) == alignof(short));
union U {

int n; X x;
bous
static_assert(sizeof u == sizeof u.x);
static_assert(alignof(u) == alignof(u.n));
int main() {}

Kuszace moze by¢ przekonanie, Ze przedstawiona unia (konstrukcja union) pozwala
przeprowadzac niejawng konwersje takich elementéw jak czterobajtowa liczba zmien-
noprzecinkowa na czterobajtowa liczbe catkowita. W jezyku C (ale nie C++) jest to rze-
czywiscie mozliwe.

Mimo powszechnego przekonania, Ze taka praktyka jest dozwolona w C++, w rzeczy-
wistosci tak nie jest (z jednym szczegdlnym wyjatkiem, ktéry oméwimy za chwile).
W C++ ostatni element sktadowy unii, do ktérego cos zapisano, nazywany jest aktyw-
nym elementem skladowym unii i tylko z niego mozna w kodzie odczytywac¢ dane.
Dlatego ponizszy kod jest nieprawidtowy — poniewaz odczytywanie z nieaktywnego
elementu sktadowego unii prowadzi do niezdefiniowanego zachowania, ktdre jest nie-
dozwolone w przypadku funkcji constexpr:
union U {
float f;
int n;
bs
constexpr int f() {
U u{ 1.5 };
return u.n; // niezdefiniowane zachowanie (u.f to aktywny element sktadowy unii)

}
int main() {
// constexpr auto r0 = f{); // ten kod nie pozwala na kompilacje
auto rl = f(); //ten kod sie kompiluje, poniewaz nie uzyto kontekstu
// constexpr, cho¢ wciqz mamy niezdefiniowane zachowanie

}

Jak zapewne wiesz, funkcja typu constexpr, taka jak f() w poprzednim przykitadzie, nie
moze zawiera¢ kodu, ktéry powodowatby niezdefiniowane zachowanie, jesli zostataby
wywotana w kontekscie constexpr. To czasami czyni ja interesujagcym narzedziem do
zilustrowania pewnych kwestii.

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdziat 2 ® Na co nalezy uwaza¢? 61

Istnieje pewne zastrzezenie dotyczace konwersji miedzy elementami sktadowymi unii,
ktore wigze sie z pojeciem wspdlnej sekwencji poczatkowej.

Wspolna sekwencja poczatkowa

Jak wyjasniono w dokumencie na stronie https://eelis/c++draft/class.mem.general#23,
wspdlna sekwencja poczatkowa (ang. common initial sequence) dwéch struktur
sktada sie z poczatkowych elementdéw sktadowych tych struktur, ktére maja odpowia-
dajace sobie typy zgodne pod wzgledem uktadu pamieci. Na przyktad wspdlna sekwen-
cja poczatkowa struktur A i B sktada sie z ich dwoch pierwszych elementéw (int jest
zgodny uktadem z const int, za$ float jest zgodny z volatile float):

struct A { int n; float f; char c; };
struct B { const int b0; volatile float x; };

W przypadku unii mozliwe jest odczytanie warto$ci z nieaktywnego elementu sktado-
wego, jesli odczytywana wartos¢ jest czes$cig wspdlnej poczatkowej sekwencji elemen-
tow sktadowych (zaréwno odczytywany, jak i aktywny). Spojrz na kolejny przyktad:
struct A { int n0; char c0; };
struct B { int nl; char cl; float x; };
union U {
A a;
B b;
b
int f() {
Uu{ {1, '2" } }; //inicjalizacja u.a
return u.b.nl; //to nie jest niezdefiniowane zachowanie

}

int main() {

return f(); //poprawne
}

Warto zauwazy¢, ze takie zabiegi na typach powinny by¢ stosowane z umiarem, ponie-
waz mogg utrudni¢ zrozumienie kodu zrédtowego. Niemniej jednak moga okazac sie
bardzo przydatne. Na przyktad mozna je wykorzysta¢ do implementacji ciekawych re-
prezentacji wewnetrznych dla klas, ktére moga mie¢ dwie rézne formy (takich jak
optional czy string), co z kolei bedzie utatwiato przetgczanie miedzy nimi. Na tej pod-
stawie mozna zbudowac kilka uzytecznych optymalizacji.

Typy intptr_t i uintptr_t

Jak wspomniano juz wcze$niej w rozdziale, w jezyku C++ nie mozna bezposrednio poréw-
nywa¢ wskaznikéw do dowolnych miejsc w pamieci w sposéb dobrze zdefiniowany.
Jednak w taki sposéb mozna poréwnywac wartos$ci catkowite, ktore s3 powiazane ze
wskaznikami. Spéjrz na kolejny przyktad:
#include <iostream>
#include <cstdint>
int main() {
using namespace std;
int m,
n;

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

62

Efektywne zarzadzanie pamiecig w C+ +

// zwykte poréwnywanie &m i &n jest niedozwolone
if(reinterpret_cast<intptr_t>(&m) <

reinterpret_cast<intptr_t>(&n))

cout << "m precedes n in address order\n";
else

cout << "n precedes m in address order\n";

}

Typy std::intptr_tistd::uintptr_t sa aliasami dla typéw catkowitych, ktére z kolei sg
wystarczajgco duze, aby pomiesci¢ adres. W przypadku operacji, ktére moga prowadzic¢
do warto$ci ujemnych (np. odejmowanie), nalezy uzywac typu ze znakiem, intptr_t.

Funkcja std::memcpy()

Ze wzgledéw historycznych (i dla zachowania zgodnosci z jezykiem C) funkcja
std::memcpy() ma szczegdlne wilasciwosci, poniewaz moze zainicjowac cykl zycia
obiektu, jesli zostanie odpowiednio uzyta. Nieprawidtowe uzycie std: :memcpy () do ma-
nipulowania typem wygladatoby nastepujaco:

// zatézmy, zZe takie rozwiqzanie sprawdza sie w tym przyktadzie
static_assert(sizeof(int) == sizeof(float));
#include <cassert>
#include <cstdlib>
#include <cstring>
int main() {

float f = 1.5f;

void *p = malloc(sizeof f);

assert(p);

int *q = std::memcpy(p, &f, sizeof f);

int value = *q; //niezdefiniowane zachowanie

//
}

Tego rodzaju rozwigzanie jest niedozwolone, poniewaz wywotanie std: :memcpy () ko-
piuje obiekt typu float do obszaru pamieci wskazywanego przez p, co efektywnie roz-
poczyna w tym miejscu cykl zyciowy obiektu float. Poniewaz q jest wskaznikiem do

obiektu typu int*, préba odwotania sie do niego prowadzi do niezdefiniowanego za-
chowania.

Z drugiej strony ponizszy kod jest poprawny i pokazuje, jak mozna wykorzysta¢ funk-
cje std: :memcpy () na potrzeby manipulacji typem:

// zatézmy, Ze takie rozwiqzanie sprawdza sie w tym przyktadzie
static_assert(sizeof(int) == sizeof(float));
#include <cassert>
#include <cstring>
int main() {
float f = 1.5f;

int value;
std: :memcpy (&value, &f, sizeof f); //ok
Y/
}
Kup ksigzke

Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdziat 2 ® Na co nalezy uwaza¢? 63

W tym drugim przyktadzie uzycie std: :memcpy () do skopiowania bitéw z f do value roz-
poczyna cykl zyciowy zmiennej value. Od tego momentu mozna jej uzywac jak kazdej
innej zmiennej typu int.

Szczegolne przypadki char*, unsigned char*
i std::byte*

Typy char*, unsigned char* (ale nie signed char*) oraz std::byte* majg w jezyku C++
status specjalny, poniewaz mogg dostownie wskazywac¢ dowolne miejsce w pamieci
i tworzy¢ aliasy dla wszystkiego (https://eel.is/c++draft/basic.lval#11).Z tego powodu
jesli musisz uzyska¢ dostep do bajtéow reprezentujacych wartosc obiektu, wowczas te
typy beda waznym narzedziem w Twoim arsenale programistycznym.

W dalszej czesci ksigzki bedziemy czasami korzystac z tych typow podczas wykonywa-
nia niskopoziomowych operacji na bajtach. Nalezy pamieta¢, ze takie zabiegi sa z na-
tury niestabilne i nieprzeno$ne, poniewaz szczegéty takie jak kolejno$¢ bajtow w licz-
bie catkowitej moga sie r6zni¢ w zalezno$ci od platformy. Nalezy ostroznie korzysta¢
z takich niskopoziomowych narzedzi.

Funkcja std::start_lifetime_as<T>()

Ostatnimi narzedziami, ktére oméwimy w rozdziale, sg funkcje std::start_lifetime_
>as<T>() i std::start_Tifetime as_array<T>(). Wprawdzie byly dyskutowane przez lata,
ale zyskaly na znaczeniu wraz z wydaniem standardu C++23. Ich rolg jest przyjmowa-
nie jako argumentéw czego$ takiego jak bufor nieprzetworzonych bajtow pamieci
i zwracanie wskaznika do obiektu typu T (wskazywanego przez ten bufor), ktérego
cykl zyciowy rozpoczat sie. Dzieki temu od tego momentu mozna byto uzywac obiektu,
do ktérego prowadzi wskaznik:
static_assert(sizeof(short) == 2);
#include <memory>
int main() {
char buf[]{ 0x00, 0x01, 0x02, 0x03 };
short* p = std::start_lifetime_as<short>(buf);
// uzycie *p jako skrotu
1

To jest funkcjonalnos$¢ niskopoziomowa, ktérej nalezy uzywac ostroznie. Celem jest
umozliwienie implementacji rozwigzan takich jak niskopoziomowe operacje wejscia/
wyj$cia na plikach czy kod przeznaczony do obstugi sieci (np. odbieranie pakietu UDP
i traktowanie jego reprezentacji wartosci, jakby byt istniejagcym obiektem) w czystym
jezyku C++ bez wpadania w putapke zachowania niezdefiniowanego. Te funkcje bar-
dziej szczegbétowo omoéwimy w rozdziale 15.

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

64 Efektywne zarzadzanie pamiecia w C+ +

Podsumowanie

W tym rozdziale omo6wiliSmy niektére niskopoziomowe i czasem nieprzyjemne narze-
dzia, ktérych niekiedy bedziemy uzywac. Celem byto zwrécenie uwagi na potencjalne
zagrozenia i przypomnienie: musimy by¢é odpowiedzialni oraz tworzy¢ rozsadny i po-
prawny kod, nawet mimo tego, Ze jezyk programowania C++ daje pod tym wzgledem
duza swobode.

Podczas tworzenia w dalszych rozdziatach tej ksigzki zaawansowanych mechanizmoéw
zarzadzania pamiecia te niebezpieczne narzedzia czasami okazg sie przydatne. Miej na
uwadze zamieszczone w tym rozdziale informacje dotyczace elementéw wymagaja-
cych ostroznosci, korzystaj z tych narzedzi bardzo oszczednie, ostroznie oraz w sposéb
utrudniajacy ich niewtasciwe uzycie.

W nastepnym rozdziale przyjrzymy sie kluczowym operacjom rzutowania, ktére sa do-
stepne w C++. Celem jest zrozumienie mechanizméw poszczegdlnych rodzajéow rzuto-
wania oraz tego, kiedy (i w jakim celu) nalezy go uzywa¢, aby$my mogli nastepnie two-
rzy¢ potezne abstrakcje zarzadzania pamiecia, ktére chcemy wykorzystywac.

Kup ksigzke Pole¢ ksigzke


https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Zmien swoja strone WWW w dziatajacy bankomat!

Dowiedz sie wiece] i dotacz juz dzisiaj! % i
http://program-partnerski.helion.pl


https://program-partnerski.helion.pl

Opanuj zaawansowane techniki zarzagdzania
pamiecia w nowoczesnym C++

Zarzadzanie pamigecia w C++, jeden z najbardziej wymagajacych aspektéw tego jezyka programowania,
stanowi jednoczesnie klucz do tworzenia wydajnych i bezpiecznych aplikacji. W dobie rosnacych wyma-
gan dotyczacych optymalizacji kodu, zwtaszcza w systemach czasu rzeczywistego, grach i aplikacjach
wbudowanych, umiejetnos¢ efektywnego kontrolowania mechanizmoéw alokacji pamieci staje sie szcze-
gdlnie wazna kompetencja kazdego programisty C++. Ksiazka Patrice’a Roya, cztonka Komitetu
Standardow ISO C++, przedstawia kompleksowe podejscie do opanowania tych zaawansowanych
technik.

Autor systematycznie prowadzi Czytelnika przez wszystkie aspekty zarzadzania pamiecia — od pod-
stawowych koncepcji cyklu zyciowego obiektéw, przez implementacje inteligentnych wskaznikow,

az po zaawansowane techniki optymalizacji. Ksiazka faczy teorie z praktyka, prezentujac konkretne
implementacje detektorow wyciekéw pamieci, alokatoréw opartych na pulach i konteneréw gene-

rycznych. Szczegétowo omawia zaréwno tradycyjne podejscia, jak i najnowsze rozwiazania wprowa-
dzone w standardach C++20 i C++23, w tym polimorficzne zasoby pamieci (PMR) i mechanizmy
placement new.

W ksiazce:

* implementacja wiasnych inteligentnych wskaznikéw i konteneréw

= techniki optymalizacji oparte na pulach pamieci

» praktyczne narzedzia diagnostyczne

* mechanizmy alokacji dla systemoéw o niskim op6Znieniu i aplikacji czasu rzeczywistego

* bezpieczne techniki manipulacji typami i obstugi wyjatkéw w kontekscie zarzadzania zasobami
Patrice Roy programuje zawodowo w C++ od ponad 30 lat. Od 1998 roku wykfada informatyke —
specjalizuje sie w systemach czasu rzeczywistego i programowaniu gier. Od 2014 roku jest aktywnym

cztonkiem Komitetu Standaryzacyjnego ISO C++, wspodtpracuije z takimi ekspertami jak Michael Wong
i Bjarne Stroustrup przy rozwoju standardéw jezyka.

ISBN 978-83-2

Ui




	!5-12_spis
	02

