

• Kup książkę
• Poleć książkę
• Oceń książkę

• Księgarnia internetowa
• Lubię to! » Nasza społeczność

https://helion.pl/rt/efzapa
https://helion.pl/rf/efzapa
https://helion.pl/ro/efzapa
https://helion.pl
https://helion.pl/r/4CAKF

Spis treści 5

Spis treści

O autorze .. 13

O korektorach merytorycznych ... 14

Przedmowa .. 15

Wprowadzenie ... 19

CZĘŚĆ 1. Pamięć w C++

ROZDZIAŁ 1
Obiekty, wskaźniki i referencje .. 25

Wymagania techniczne .. 25
Reprezentacja pamięci w C++ .. 26

Obiekty, wskaźniki i referencje .. 26
Zrozumienie podstawowych właściwości obiektów 31

Cykl życiowy obiektu ... 32
Wielkość obiektu, jego wyrównanie i wypełnienie 33
Kopiowanie i przenoszenie ... 39

Tablice ... 48
Podsumowanie .. 49

ROZDZIAŁ 2
Na co należy uważać? ... 51

Różne rodzaje zła .. 52
Źle sformułowany kod, bez wymaganej diagnostyki 52
Niezdefiniowane zachowanie ... 52
Zachowanie definiowane przez implementację 53
Nieokreślone zachowanie (niezdefiniowane w dokumentacji) 54
Zasada jednej definicji .. 54
Błędne zachowanie ... 55

Wskaźniki .. 55
Zastosowania arytmetyki wskaźników w tablicach 56
Wymienialność wskaźników .. 56
Wykorzystanie arytmetyki wskaźników wewnątrz obiektu 57

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

6 Efektywne zarządzanie pamięcią w C++

Manipulowanie typami .. 59
Manipulacja typami poprzez elementy składowe unii 60
Typy intptr_t i uintptr_t .. 61
Funkcja std::memcpy() .. 62
Szczególne przypadki char*, unsigned char* i std::byte* 63
Funkcja std::start_lifetime_as<T>() .. 63

Podsumowanie .. 64

ROZDZIAŁ 3
Rzutowanie i kwalifikatory cv .. 65

Wymagania techniczne .. 65
Czym jest rzutowanie? ... 66
Bezpieczeństwo w systemie typów — kwalifikatory cv 67
Rzutowania w C++ ... 68

Twój najlepszy przyjaciel (w większości przypadków) — static_cast 69
Sygnał, że coś jest nie tak — dynamic_cast ... 70
Igranie z bezpieczeństwem — const_cast ... 71
„Uwierz mi, kompilatorze” — reinterpret_cast 72
Wiem, że bity są poprawne — bit_cast ... 73
Nieco niezwiązane, ale warte wspomnienia — duration_cast 74
Znienawidzone rzutowanie w stylu C .. 75

Podsumowanie .. 76

CZĘŚĆ 2. Techniki niejawnego
zarządzania pamięcią

ROZDZIAŁ 4
Korzystanie z destruktorów .. 79

Wymagania techniczne .. 80
Destruktory — krótkie podsumowanie .. 80
Zarządzanie zasobami ... 82

Obsługa wyjątków… czy może nie? .. 84
Idiom RAII .. 85

RAII i specjalne funkcje składowe C++ ... 86
Potencjalne pułapki ... 87

Destruktory nie powinny zgłaszać wyjątków ... 87
Poznaj kolejność niszczenia obiektów ... 89

Standardowe narzędzia do automatyzacji zarządzania zasobami 93
unique_ptr<T> i shared_ptr<T> ... 93
lock_guard i scoped_lock .. 94

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Spis treści 7

Obiekty strumieniowe ... 96
vector<T> i inne kontenery .. 97

Podsumowanie .. 97

ROZDZIAŁ 5
Korzystanie ze standardowych inteligentnych wskaźników 99

Wymagania techniczne .. 100
Standardowe inteligentne wskaźniki ... 100

O wyrażaniu intencji poprzez sygnatury funkcji 102
Typ unique_ptr .. 104

Obsługa obiektów .. 105
Obsługa tablic .. 107
Niestandardowe funkcje usuwające .. 109
make_unique .. 111

Typy shared_ptr i weak_ptr .. 114
Użyteczność i koszty ... 116
make_shared() .. 117
A co z weak_ptr? .. 117

Kiedy stosować nieprzetworzone wskaźniki? ... 121
Podsumowanie .. 122

ROZDZIAŁ 6
Implementowanie inteligentnych wskaźników 123

Wymagania techniczne .. 124
Semantyka własności ... 124
Implementacja własnej wersji unique_ptr .. 125

Sygnatura typu ... 125
Specjalne funkcje składowe .. 128
Funkcje przypominające wskaźniki .. 129

Implementacja własnej, prostej wersji inteligentnego
wskaźnika shared_ptr .. 131

Kilka słów o funkcji make_shared() ... 138
Implementacja wskaźnika powielającego opartego na polityce 139

Wykrywanie za pomocą interfejsów .. 140
Wykrywanie za pomocą cech .. 142
Wykrywanie za pomocą konceptów .. 143

Kilka prostych, ale wciąż przydatnych inteligentnych wskaźników 144
Wskaźnik non_null_ptr ... 144
Typ observer_ptr ... 146

Podsumowanie .. 147

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

8 Efektywne zarządzanie pamięcią w C++

CZĘŚĆ 3. Przejmowanie kontroli
(nad mechanizmami zarządzania pamięcią)

ROZDZIAŁ 7
Przeciążanie operatorów alokacji pamięci .. 151

Dlaczego warto przeciążać funkcje alokacji pamięci? 152
Krótki przegląd funkcji alokacji pamięci w języku C 152
Przegląd funkcji alokacji pamięci w C++ ... 154

Globalne funkcje alokacji .. 155
Funkcje alokacji, które nie zgłaszają wyjątków 159
Najważniejsza funkcjonalność operator new —

mechanizm placement new .. 162
Funkcje alokacji dla elementów składowych ... 165
Funkcje alokacji, które uwzględniają wyrównanie 166
Niszcząca funkcja delete ... 167

Podsumowanie .. 170

ROZDZIAŁ 8
Implementacja prostego detektora wycieków pamięci 171

Wymagania techniczne .. 172
Plan ... 172
Pierwsze podejście (które prawie działa) .. 176

Klasa singleton Accountant .. 176
Implementacja funkcji operator new i new[] ... 180
Implementacja funkcji operator delete i delete[] 181
Wizualizacja całości .. 182

Wyszukiwanie (i rozwiązywanie) problemów ... 187
Powrót do naszej implementacji (i wyciągnięcie wniosków) 190
Podsumowanie .. 191

ROZDZIAŁ 9
Nietypowe mechanizmy alokacji ... 192

Wymagania techniczne .. 192
Mechanizm placement new i sprzęt mapowany w pamięci 193
Uproszczenie użycia wersji nothrow funkcji operator new 196
Brak pamięci i funkcja new_handler .. 201
Standardowy C++ a nietypowe zarządzanie pamięcią 203

Fikcyjne API pamięci współdzielonej ... 204
Przykład kodu użytkownika .. 207
Standardowo wyglądający odpowiednik kodu użytkownika 209

Podsumowanie .. 213

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Spis treści 9

ROZDZIAŁ 10
Zarządzanie pamięcią oparte na pulach i inne optymalizacje 215

Wymagania techniczne .. 216
Zarządzanie pamięcią oparte na pulach ... 216

Konkretny przykład — implementacja oparta na wielkości 217
Uogólnienie do SizeBasedArena<T,N> ... 226

Gdy parametry ulegają zmianie ... 228
Pule fragmentowane ... 229
Podsumowanie .. 239

ROZDZIAŁ 11
Odroczone zwalnianie pamięci ... 240

Wymagania techniczne .. 241
Co oznacza odroczone zwalnianie pamięci? .. 241
Odzyskiwanie zasobów (bez finalizacji) pod koniec programu 244
Odzyskiwanie zasobów i finalizacja na końcu programu 247
Odzyskiwanie zasobów i finalizacja na końcu zasięgu 252
Podsumowanie .. 258

CZĘŚĆ 4. Tworzenie kontenerów generycznych
(i trochę więcej)

ROZDZIAŁ 12
Tworzenie kontenerów generycznych
z jawnym zarządzaniem pamięcią .. 263

Wymagania techniczne .. 264
Implementacja własnej alternatywy dla vector<T> 265

Wybór reprezentacji dla kontenera z ciągłymi elementami 266
Implementacja Vector<T> ... 267

Implementacja własnej alternatywy dla forward_list<T> 277
Wybór reprezentacji dla kontenera opartego na węzłach 278
Implementacja ForwardList<T> ... 278

Efektywniejsze zarządzanie pamięcią ... 284
Znacznie wydajniejszy typ Vector<T> .. 286
Korzystanie z niskopoziomowych narzędzi standardowych 287
Stałe składowe lub referencyjne a std::launder() 295

Podsumowanie .. 298

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

10 Efektywne zarządzanie pamięcią w C++

ROZDZIAŁ 13
Tworzenie kontenerów generycznych
z niejawnym zarządzaniem pamięcią .. 299

Wymagania techniczne .. 300
Dlaczego jawne zarządzanie pamięcią

komplikuje naszą implementację? ... 300
Niejawne zarządzanie pamięcią za pomocą inteligentnego wskaźnika 301

Wpływ na prostą implementację Vector<T> .. 302
Wpływ na zaawansowaną implementację Vector<T> 305

Skutki przeprojektowania klasy .. 310
Uogólnienie do ForwardList<T>? .. 311

Próba zdefiniowania każdego węzła jako odpowiedzialnego
za swojego następcę .. 311

Próba zdefiniowania wskaźnika head jako odpowiedzialnego
za pozostałe węzły ... 315

Podsumowanie .. 317

ROZDZIAŁ 14
Tworzenie kontenerów generycznych z obsługą alokatorów 318

Wymagania techniczne .. 319
Dlaczego alokatory? .. 319
Klasyczne alokatory ... 320

Przed C++11 .. 320
Tradycyjne alokatory we współczesnych standardach 342
Zarządzanie tradycyjnym cyklem życiowym alokatora 345
Problemy z tradycyjnymi alokatorami ... 349

Polimorficzne alokatory zasobów pamięci ... 350
Zagnieżdżone alokatory .. 352
Alokatory i zbieranie danych ... 353
Zalety i koszty ... 355

Podsumowanie .. 356

ROZDZIAŁ 15
Współczesne zagadnienia ... 357

Wymagania techniczne .. 358
Rozpoczynanie cyklu życiowego obiektu bez konstruktorów 358
Prosta relokacja ... 362
Funkcje alokacji i zwalniania pamięci, które znają typy 365
Podsumowanie .. 368

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Spis treści 11

DODATEK
Co powinieneś wiedzieć? .. 369

struktury i klasy ... 369
std::size_t .. 371
Operator sizeof .. 371
Asercje ... 371
Niezdefiniowane zachowanie .. 372
Cechy typów .. 373
Cechy std::true_type i std::false_type ... 373
Cecha std::conditional<B,T,F> .. 374
Algorytmy .. 376
Funktory (obiekty funkcyjne) i wyrażenia lambda 377
Przyjaciele .. 378
Operator decltype .. 381
Idealne przekazywanie ... 382
Wzorzec projektowy singleton ... 384

Tworzenie egzemplarza podczas uruchamiania programu 385
Inicjalizacja w trakcie pierwszego wywołania .. 387

Funkcja std::exchange() ... 388

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

12 Efektywne zarządzanie pamięcią w C++

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdział 2  Na co należy uważać? 51

Na co należy uważać?
Rozdział
2

Zdecydowałeś się przeczytać książkę o zarządzaniu pamięcią w C++ i jesteś gotowy za-równo na poznanie podejść wysokopoziomowych, jak i na „ubrudzenie rąk”, aby uzy-skać precyzyjną kontrolę nad procesem zarządzania pamięcią. Świetny plan! Ponieważ będziesz tworzyć kod zarówno bardzo wysokiego, jak i bardzo niskiego po-ziomu, musimy upewnić się, że jesteś świadomy pewnych kwestii. Dzięki temu unik-niesz problemów i nie będziesz tworzyć kodu, który wydaje się funkcjonować, ale w rzeczywistości nie działa, przynajmniej nie w sposób przenośny. W tym rozdziale zwrócimy uwagę na niektóre aspekty programowania w C++, które będą istotne w całej książce, ale z którymi należy obchodzić się ostrożnie. Wprawdzie może to wyglądać jak (bardzo) krótkie kompendium złych praktyk lub zachęta do wpa-dania w tarapaty, ale potraktuj to raczej jako sposoby na dobre wykorzystanie nieco niebezpiecznych lub trudnych funkcji języka. Używasz C++, masz znaczną swobodę wyrazu i dostęp do funkcji, które są przydatne, jeśli dobrze je znasz i rozumiesz. Chcemy tworzyć kod, który jest czysty i wydajny, oraz kształtować odpowiedzialnych programistów. Spróbujmy osiągnąć to razem. W tym rozdziale omówimy następujące zagadnienia:
 Sposoby, w jakie można wpaść w kłopoty z kodem C++. Istnieją kwestie, których kompilator nie może wiarygodnie zdiagnozować, a także sytuacje, w przypadku których standard C++ nie określa, co się stanie. Tworzenie kodu, który robi takie rzeczy, to przepis na katastrofę — lub co najmniej zaskakujące czy nieprzenośne zachowanie.
 W szczególności przyjrzymy się, jak można doprowadzić do problemów podczas pracy ze wskaźnikami. Ponieważ ta książka omawia zarządzanie pamięcią, będziemy często używać wskaźników i związanej z nimi arytmetyki. Umiejętność rozróżnienia między właściwym i niewłaściwym ich użyciem będzie bardzo cenna.
 Na koniec omówimy, jakie rodzaje konwersji typów możemy wykonywać bez uciekania się do rzutowania (to będzie tematem następnego rozdziału) i dlaczego, wbrew powszechnemu przekonaniu, rzadko jest to dobry pomysł. Naszym ogólnym celem będzie nauczenie się, czego nie powinniśmy robić (mimo że czasami będziemy wykonywać manewry, które to przypominają) i unikanie tych prak-tyk w przyszłości. Ponadto powinieneś zrozumieć, dlaczego postępujemy w taki sposób. W kolejnych rozdziałach skoncentrujemy się na tym, co powinniśmy robić i jak robić to dobrze!

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

52 Efektywne zarządzanie pamięcią w C++

Różne rodzaje zła Zanim przejdziemy do omówienia konkretnych praktyk wymagających szczególnej uwagi, warto przyjrzeć się głównym kategoriom ryzyka, na jakie możemy się natknąć, jeśli tworzony przez nas kod nie przestrzega zasad języka. Z każdą taką kategorią wiąże się pewien rodzaj nieprzyjemności, których powinniśmy unikać.
Źle sformułowany kod, bez wymaganej
diagnostyki Niektóre konstrukcje w języku C++ określane są jako źle sformułowane, bez wyma-
ganej diagnostyki (ang. ill-formed, no diagnostic required, IFNDR). W standardzie języka często można natrafić na sformułowania w stylu „jeśli [...], program jest źle sformuło-
wany, bez wymaganej diagnostyki”. Gdy coś jest IFNDR, oznacza to, że nasz program jest uszkodzony. Wprawdzie mogą wystąpić niepożądane skutki, ale kompilator nie jest zobowiązany do informowania nas o nich (czasami kompilator nie ma wystarcza-jących informacji, aby zdiagnozować problematyczną sytuację). Naruszenia zasady jednej definicji (ang. one definition rule, ODR), do których wró-cimy w dalszej części tego rozdziału, zaliczają się do kategorii IFNDR. Istnieją jednak inne przypadki, takie jak posiadanie obiektu globalnego o różnych wymaganiach wy-równania (za pomocą alignas) w różnych jednostkach translacji (zasadniczo różnych plikach źródłowych) lub zdefiniowanie konstruktora, który deleguje do samego siebie bezpośrednio lub pośrednio. Oto przykład:

class X {
public:
 // #0 deleguje do #1, który deleguje do #0, który…
 X(float x) : X{ static_cast<int>(x) } { // #0
 }
 X(int n) : X{ n + 0.5f } { // #1
 }
};
int main() {} Warto zauważyć, że kompilator może wyświetlić komunikat diagnostyczny, ale nie jest to wymagane. Nie chodzi o to, że kompilatory są leniwe — w niektórych przypadkach mogą nawet nie być w stanie dostarczyć informacji diagnostycznych! Dlatego należy uważać, aby nie tworzyć kodu, który prowadzi do sytuacji IFNDR.

Niezdefiniowane zachowanie W poprzednim rozdziale wspomniałem o tzw. niezdefiniowanym zachowaniu (ang.
undefined behavior, UB). Przez programistów C++ często jest ono postrzegane jako źró-dło problemów i bólu głowy, ale odnosi się do każdego zachowania, dla którego stan-dard C++ nie nakłada żadnych wymagań. W praktyce oznacza to, że jeśli utworzysz kod, który zawiera niezdefiniowane zachowanie, wówczas nie masz pojęcia, co się stanie podczas wykonywania programu (przynajmniej jeśli dążysz do otrzymania względnie

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdział 2  Na co należy uważać? 53

przenośnego kodu). Klasyczne przykłady niezdefiniowanego zachowania obejmują de-referencję wskaźnika null lub niezainicjalizowanego — jeśli to zrobisz, będziesz mieć poważne problemy. Z perspektywy kompilatorów niezdefiniowane zachowanie nie powinno występować (kod przestrzegający zasad języka nie prowadzi do UB). Z tego powodu kompilatory przeprowadzają „optymalizacje wokół” kodu zawierającego niezdefiniowane zacho-wanie, co może prowadzić do zaskakujących efektów: usunięcie testów i gałęzi, opty-malizacja pętli itp. Efekty niezdefiniowanego zachowania mają tendencję do lokalności. Na przykład w po-niższym fragmencie kodu istnieje test sprawdzający, przed użyciem *p w jednym przy-padku, czy p nie ma wartości null, ale istnieje co najmniej jeden dostęp do *p, który nie jest sprawdzany. Ten kod jest uszkodzony (niesprawdzony dostęp do *p to przykład niezdefiniowanego zachowania), więc kompilator może go przepisać w taki sposób, że wszystkie testy sprawdzające, czy p nie ma wartości null, zostaną usunięte. W końcu, gdyby p miało postać nullptr, to oznacza, że szkoda została już wyrządzona. Zatem kompi-lator ma prawo założyć, że programista przekazał do funkcji wskaźnik inny niż null!
int g(int);
int f(int *p) {
 if(p != nullptr)
 return g(*p); // w porządku, wiemy, że p ma wartość inną niż null
 return *p; // ups, jeżeli p == nullptr, wówczas mamy niezdefiniowane zachowanie
} W tym przypadku cały kod funkcji f() mógłby zostać przepisany przez kompilator jako

return g(*p), zaś polecenie return *p stałoby się nieosiągalnym kodem. Potencjalne niezdefiniowane zachowanie kryje się w różnych miejscach języka, w tym w przepełnieniu liczb całkowitych ze znakiem, dostępie do elementów tablicy poza jej granicami, wyścigach danych itd. Trwają ciągłe wysiłki, które mają na celu zmniejsze-nie liczby potencjalnych przypadków niezdefiniowanego zachowania (do tego zadania została nawet powołana specjalna grupa robocza SG12), ale prawdopodobnie pozosta-nie ono częścią języka w dającej się przewidzieć przyszłości i musimy być tego świadomi.
Zachowanie definiowane przez implementację Niektóre fragmenty standardu podlegają tzw. zachowaniu definiowanemu przez im-
plementację, czyli zachowaniu, na które można liczyć w przypadku konkretnej plat-formy. Jest to zachowanie, które Twoja platforma powinna udokumentować, ale które nie jest gwarantowane jako przenośne na inne platformy. Zachowanie definiowane przez implementację występuje w wielu sytuacjach i obejmuje obszary takie jak limity definiowane przez implementację: maksymalna liczba zagnież-dżonych nawiasów, maksymalna liczba etykiet case w poleceniu switch, rzeczywista wielkość obiektu, maksymalna liczba wywołań rekurencyjnych w funkcji constexpr, liczba bitów w bajcie itd. Inne dobrze znane przypadki zachowania definiowanego przez im-plementację to liczba bajtów w obiekcie typu int lub to, czy typ char jest ze znakiem, czy bez znaku.

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

54 Efektywne zarządzanie pamięcią w C++

Wprawdzie zachowanie definiowane przez implementację samo w sobie nie jest źró-dłem problemów, ale może okazać się kłopotliwe, jeśli dąży się do otrzymania przeno-śnego kodu, a jednocześnie opiera się na pewnych nieprzenośnych założeniach. Czasami warto jawnie wyrazić swoje założenia w kodzie za pomocą static_assert, gdy założe-nie może być zweryfikowane w czasie kompilacji. Ewentualnie za pomocą podobnych mechanizmów, które działają w czasie wykonania, aby zdać sobie sprawę — zanim bę-dzie za późno — że te założenia są błędne dla danej platformy docelowej. Spójrz na przedstawiony tutaj kod funkcji main():
int main() {
 // w kodzie przyjęto założenie, że wielkość typu int wynosi 4 bajty,
 // to nie jest przykład przenośnego założenia
 static_assert(sizeof(int)==4);
 // kod zostanie skompilowany tylko wtedy, gdy warunek jest prawdziwy…
} O ile nie masz pewności, że Twój kod nigdy nie będzie musiał być przenoszony na inną platformę, staraj się jak najrzadziej polegać na zachowaniu, które pozostaje zależne od implementacji. Jeśli jednak musisz to zrobić, upewnij się o zweryfikowaniu takich sy-tuacji (najlepiej za pomocą wywołania static_assert, a jeśli to niemożliwe, to w czasie wykonania) i ich odpowiednim udokumentowaniu. Takie podejście pomoże uniknąć nieprzyjemnych niespodzianek w przyszłości.

Nieokreślone zachowanie
(niezdefiniowane w dokumentacji) Podczas gdy zachowanie zdefiniowane w implementacji jest nieprzenośne, ale udoku-mentowane dla danej platformy, zachowanie nieokreślone to takie, które nawet dla po-prawnie napisanego programu z prawidłowymi danymi zależy od implementacji, ale nie musi być udokumentowane. Niektóre przypadki nieokreślonego zachowania obejmują stan obiektu po przeniesie-niu (określany jako poprawny, ale nieokreślony, więc bardziej chodzi o nieokreślony stan niż zachowanie), kolejność obliczania podwyrażeń w wywołaniu funkcji, czyli czy
f(g(),h()) najpierw obliczy g() czy h(), wartości w nowo przydzielonym fragmencie pamięci itp. Ten ostatni przykład jest interesujący dla naszych rozważań, ponieważ wersja robocza (debug) programu może wypełnić nowo przydzielone fragmenty pa-mięci rozpoznawalnym wzorem bitowym, aby pomóc w procesie debugowania. Z kolei zoptymalizowana wersja tego samego narzędzia może pozostawić początkowe bity nowo przydzielonego fragmentu pamięci „niezainicjalizowane”, wraz z bitami, które miały w momencie alokacji, aby w ten sposób poprawić wydajność.
Zasada jednej definicji Zasadę jednej definicji można przedstawić następująco: w jednostce translacji może istnieć tylko jedna definicja każdego „elementu” (funkcji, obiektu w zakresie, wylicze-nia, szablonu itp.), chociaż może być wiele deklaracji tego elementu. Rozważmy nastę-pujący fragment kodu:

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdział 2  Na co należy uważać? 55

int f(int); // deklaracja
int f(int n); // to również jest deklaracja
int f(int m) { return m; } // definicja
// int f(int) { return 3; } // nie wolno tak zrobić (złamanie zasady jednej definicji) W C++ unikanie naruszeń zasady jednej definicji jest bardzo ważne, ponieważ te „zło-śliwości” mogą umknąć uwadze kompilatora i wpaść w kategorię IFNDR. Na przykład ze względu na oddzielną kompilację plików źródłowych, jeżeli plik nagłówkowy zawiera definicję funkcji nieosadzonej, będzie ona powielana w każdym pliku źródłowym, który dołącza ten sam plik nagłówkowy. W efekcie każda kompilacja może zakończyć się sukcesem, zaś fakt istnienia wielu definicji tej samej funkcji w jednym projekcie może być odkryty dopiero później (na etapie linkowania) lub wręcz pozostać niewy-kryty, co z kolei spowoduje chaos.

Błędne zachowanie Trwające prace związane z zapewnieniem bezpieczeństwa w C++ doprowadziły do dyskusji nad nowym rodzajem „złośliwości”, która roboczo została nazwana błędnym
zachowaniem (ang. erroneous behavior). Ta nowa kategoria ma obejmować sytuacje, które w przeszłości mogły być traktowane jako niezdefiniowane zachowanie, ale dla których możliwe byłoby przeprowadzenie diagnostyki i zapewnienie dobrze zdefinio-wanego zachowania. Wprawdzie zachowanie to nadal byłoby niepoprawne, ale błędne zachowanie w pewien sposób ograniczałoby jego konsekwencje. Muszę w tym miejscu dodać, że w chwili powstawania książki prace nad koncepcją błędnego zachowania są w toku, a ta nowa funkcjonalność języka może pojawić się w standardzie C++26. Jednym z przewidywanych zastosowań dla błędnego zachowania jest odczyt niezaini-cjalizowanej zmiennej, w przypadku którego implementacja mogłaby (ze względów bezpieczeństwa) zapewnić stałą wartość dla odczytywanych bitów. Twórcy implemen-tacji będą zachęcani do diagnozowania błędu koncepcyjnego, który pojawia się na sku-tek odczytu takiej zmiennej. Innym przypadkiem zastosowania jest sytuacja, gdy progra-mista zapomni o zwróceniu wartości z operatora przypisania dla typu innego niż void. Skoro przyjrzeliśmy się już podstawowym „rodzinom” nieprzyjemności, które mogą dotknąć nasze programy, jeśli nie będziemy ostrożni, teraz możemy zagłębić się w wy-brane z najważniejszych obszarów, które mogą przysporzyć nam kłopotów. Zobaczmy, czego powinniśmy unikać.
Wskaźniki W poprzednim rozdziale omówiłem wskaźniki w C++ pod kątem tego, co reprezentują i co oznaczają. Ponadto wyjaśniłem, czym jest arytmetyka wskaźników i jakie daje nam możliwości. Teraz przyjrzymy się praktycznym zastosowaniom tej arytmetyki, za-równo właściwymi, jak i niewłaściwymi przypadkami użycia tego niskopoziomowego (ale czasami cennego) narzędzia.

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

56 Efektywne zarządzanie pamięcią w C++

Zastosowania arytmetyki wskaźników w tablicach Arytmetyka wskaźników to przydatne, ale ostre narzędzie, którego łatwo nadużyć. W przypadku zwykłych tablic następujące dwie pętle, oznaczone jako A i B, działają dokładnie tak samo:
void f(int);
int main() {
 int vals[]{ 2,3,5,7,11 };
 enum { N = sizeof vals / sizeof vals[0] };
 for(int i = 0; i != N; ++i) // A
 f(vals[i]);
 for(int *p = vals; p != vals + N; ++p) // B
 f(*p);
} Możesz się zastanawiać nad fragmentem vals + N w pętli B — to jest poprawny (i idio-matyczny) kod C++. Istnieje możliwość obserwowania wskaźnika tuż za końcem tablicy, mimo że nie wolno wówczas odczytywać wskazywanej przez niego wartości. Standard gwarantuje, że ten konkretny adres tuż za końcem tablicy jest dostępny dla programu. Jednak nie ma takiej gwarancji dla kolejnego adresu, więc zachowaj ostrożność! Dopóki przestrzegasz zasad, możesz używać wskaźników do poruszania się w przód i w tył w obrębie tablicy. Jeśli jednak przekroczysz granice i użyjesz wskaźnika, aby wyjść poza jeden element za końcem tablicy, wkroczysz na teren niezdefiniowanego zachowania. Oznacza to, że możesz próbować uzyskać dostęp do adresu, który nie znaj-duje się w przestrzeni adresowej Twojego procesu.
int arr[10]{ }; // wszystkie elementy są zainicjalizowane z wartością zero
int *p = &arr[3];
p += 4; assert(p == &arr[7]);
--p; assert(p == &arr[6]);
p += 4; // to wciąż akceptowalne, o ile nie spróbujesz uzyskać dostępu do *p
++p; // niezdefiniowane zachowanie, brak gwarancji działania zgodnie z oczekiwaniami

Wymienialność wskaźników Standard C++ definiuje, co oznacza, że jeden obiekt jest wymienialny wskaźnikowo (ang. pointer-interconvertible) z innym. Ta wymienialność oznacza, że wskaźnika pro-wadzącego do pewnego obiektu można użyć jako wskaźnika do drugiego obiektu, za-zwyczaj poprzez rzutowanie reinterpret_cast (dokładniej omówimy je w następnym rozdziale), ponieważ mają ten sam adres. Ogólnie rzecz biorąc, obowiązują następujące zasady:
 Obiekt jest wymienialny wskaźnikowo sam ze sobą.
 Unia jest wymienialna wskaźnikowo ze swoimi elementami składowymi danych, a także z ich pierwszymi elementami składowymi danych, jeśli są to typy złożone.
 Z pewnymi ograniczeniami x oraz y są wzajemnie wymienialne wskaźnikowo, jeśli jeden z nich jest obiektem, a drugi jest tego samego typu co pierwszy niestatyczny składnik danych tego obiektu.

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdział 2  Na co należy uważać? 57

W kolejnym fragmencie kodu znajduje się kilka przykładów:
struct X { int n; };
struct Y : X {};
union U { X x; short s; };
int main() {
 X x;
 Y y;
 U u;
 // element x jest wymienialny wskaźnikowo z x
 // element u jest wymienialny wskaźnikowo z u.x
 // element u jest wymienialny wskaźnikowo z u.s
 // element y jest wymienialny wskaźnikowo z y.x
} Jeśli próbujesz użyć operatora reinterpret_cast w sposób, który nie przestrzega zasad konwersji wskaźników, Twój kod jest formalnie niepoprawny i nie ma gwarancji, że będzie działał w praktyce. Nie rób tego. W zaprezentowanych przykładach kodu będziemy czasami korzystać z właściwości konwersji wskaźników. Pierwszy taki przykład znajduje się już w następnym punkcie.

Wykorzystanie arytmetyki wskaźników
wewnątrz obiektu Arytmetyka wskaźników wewnątrz obiektu jest również dozwolona w C++, choć na-leży zachować ostrożność przy jej stosowaniu (wykorzystaj odpowiednie rzutowania, które omówimy w następnym rozdziale, i upewnij się, że operacje arytmetyczne na wskaźnikach są wykonywane prawidłowo). Na przykład wprawdzie poniższy kod jest poprawny, ale to nie postać, do której stoso-wania należy dążyć (nie ma sensu i wykonuje zadania w niepotrzebnie skomplikowany sposób, choć jest dozwolony i nie powoduje szkód):

struct A {
 int a;
 short s;
};
short * f(A &a) {
 // wymienialność wskaźnikowa w działaniu!
 int *p = reinterpret_cast<int*>(&a);
 p++;
 return reinterpret_cast<short*>(p); // dozwolone, choć w ramach
 // tego samego obiektu
}
int main() {
 A a;
 short *p = f(a);
 *p = 3; // poprawnie, z formalnego punktu widzenia
} W tej książce nie będziemy nadużywać tego aspektu języka C++, ale musimy być świa-domi jego istnienia, aby tworzyć poprawny kod niskiego poziomu.

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

58 Efektywne zarządzanie pamięcią w C++

W celu wzmocnienia bezpieczeństwa sprzętu i oprogramowania prowadzone są prace
nad architekturami sprzętowymi, które mogą zapewnić formę „oznaczania wskaź-
ników tagami”, co z kolei umożliwiłoby między innymi śledzenie przez sprzęt źródła
pochodzenia wskaźników. Dwa znane przykłady tego rodzaju architektury to CHERI
(https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf?link_from_packtlink
=yes) oraz Memory Tagging Extensions — MTE (Linux: https://docs.kernel.org/
next/arch/arm64/memory-tagging-extension.html?link_from_packtlink=yes, Android:
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_
Memory_Tagging_Extension_Whitepaper.pdf i https://source.android.com/docs/
security/test/memory-safety/arm-mte?link_from_packtlink=yes, Windows: https://
raw.githubusercontent.com/microsoft/MSRC-Security-Research/master/papers/2020/
Security%20analysis%20of%20memory%20tagging.pdf?link_from_packtlink=yes).

Aby skorzystać z takich rozwiązań sprzętowych, język programowania musi roz-
różniać między koncepcjami niskopoziomowych adresów i wysokopoziomowych
wskaźników, ponieważ te drugie mogą uwzględniać fakt, że wskaźnik to coś więcej
niż tylko lokalizacja w pamięci. Jeśli kod koniecznie musi porównywać niezwiązane
ze sobą wskaźniki w celu ich uporządkowania, wówczas można je rzutować na
std::intptr_t lub std::uintptr_t i porównywać wartości liczbowe zamiast faktycznych
wskaźników. Warto zauważyć, że obsługa tych dwóch typów przez kompilator
jest opcjonalna, choć wszystkie najważniejsze kompilatory oferują tę możliwość.

Wskaźnik null Koncepcja wskaźnika pustego (ang. null pointer) jako rozpoznawalnej wartości dla wskaźników, które nie prowadzą do żadnej prawidłowej lokalizacji, sięga czasów C.A.R. Hoare’a. W języku C, poprzez makro NULL, ten wskaźnik był początkowo repre-zentowany jako char* o wartości 0, następnie jako void* o wartości 0, natomiast w C++ po prostu jako wartość 0, ponieważ konstrukcje takie jak int *p = NULL; z typowanym
NULL były dozwolone w języku C, ale już nie w C++. Wynika to z bardziej rygorystycz-nego systemu typów w C++. Warto zauważyć, że wskaźnik o wartości 0 nie oznacza „wskazuj na adres zero”, ponieważ ten adres sam w sobie jest całkowicie poprawny i jako taki jest używany na wielu platformach. W C++ preferowanym sposobem wyrażania wskaźnika pustego jest nullptr, obiekt typu std::nullptr_t, który konwertuje się na wskaźniki dowolnego typu i zachowuje się zgodnie z oczekiwaniami. Rozwiązuje to w C++ wybrane długotrwałe problemy z li-terałem 0, takie jak:

int f(int); // #0
int f(char*); // #1
int main() {
 int n = 3;
 char c;
 f(n); // wywołuje #0
 f(&c); // wywołuje #1
 f(0); // niejednoznaczne przed wprowadzeniem standardu C++11,
 // natomiast począwszy od C++11, wywołuje #0
 f(nullptr); // tylko począwszy od standardu C++11, jednoznacznie wywołuje #1
}

Różnice między wskaźnikiem i adresem

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdział 2  Na co należy uważać? 59

Należy pamiętać, że nullptr nie jest wskaźnikiem — to jest obiekt niejawnie konwer-towany na wskaźnik. Z tego powodu cecha std::is_pointer_v<nullptr> zwraca wartość
false, zaś C++ oferuje oddzielną cechę o nazwie std::is_null_pointer<T> przeznaczoną do statycznego sprawdzania, czy T jest typu std::nullptr_t, czy też nie (z uwzględnie-niem const i volatile). Odwoływanie się do wskaźnika pustego prowadzi do niezdefiniowanego zachowania, podobnie jak w przypadku wskaźnika niezainicjalizowanego. Celem używania nullptr w kodzie jest uczynienie tego stanu rozpoznawalnym: nullptr to wyraźnie określona wartość, podczas gdy niezainicjalizowany wskaźnik może mieć dowolną wartość. W języku C++ (w przeciwieństwie do C) operacje arytmetyczne na wskaźniku pustym są dobrze zdefiniowane… o ile dodajemy do niego zero. Innymi słowy: dodanie zera do wskaźnika zerowego pozostaje w ramach poprawnego zachowania, ale dodanie czego-kolwiek innego może prowadzić do nieprzewidywalnych efektów. Istnieje konkretny zapis dotyczący tego w standardzie C++ (https://eel.is/c++draft/expr.add#4.1). Oznacza to, że poniższy kod jest poprawny: w przypadku pustej tablicy wywołanie begin() zwraca nullptr, natomiast size() zwraca zero, więc funkcja end() w praktyce oblicza wartość nullptr+0, co jest zgodne z regułami.

template <class T> class Array {
 T *elems = nullptr; // wskaźnik do początku
 std::size_t nelems = 0; // liczba elementów
public:
 Array() = default; // = pusta tablica
 // ...
 auto size() const noexcept { return nelems; }
 // uwaga: wartością zwrotną może być nullptr
 auto begin() noexcept { return elems; }
 auto end() noexcept { return begin() + size(); }
}; Do tego przykładu z tablicami powrócimy bardziej szczegółowo w rozdziałach 12., 13. i 14. Pomoże on omówić kilka istotnych aspektów efektywnego zarządzania pamięcią. Na razie przyjrzyjmy się innemu źródłu ryzykownych operacji programistycznych.

Manipulowanie typami Kolejnym obszarem, na którym programista C++ może wpaść w tarapaty, jest tzw. ma-
nipulowanie typami (ang. type punning). Przez manipulację typami rozumiemy tech-niki, które w pewnym stopniu obchodzą system typów języka. Uznanym narzędziem przeznaczonym do tego celu są operacje rzutowania, ponieważ pozostają one jawne w kodzie źródłowym i (poza rzutowaniem w stylu C) wyrażają intencję konwersji, ale ten temat zasługuje na osobny rozdział (następny, jeśli się nad tym zastanawiasz). W tym podrozdziale przyjrzymy się innym sposobom manipulacji typami, zarówno tym zalecanym, jak i tym, których należy unikać.

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

60 Efektywne zarządzanie pamięcią w C++

Manipulacja typami poprzez
elementy składowe unii Unia to typ, w którym wszystkie elementy składowe znajdują się pod tym samym ad-resem. Wielkość unii jest równa wielkości jej największego elementu składowego, zaś wyrównanie unii jest najściślejszym wyrównaniem spośród jej elementów. Rozważmy następujący fragment kodu:

struct X {
 char c[5]; short s;
} x;
// jeden bajt dopełnienia między x.c i x.s
static_assert(sizeof x.s == 2 && sizeof x == 8);
static_assert(alignof(x) == alignof(short));
union U {
 int n; X x;
} u;
static_assert(sizeof u == sizeof u.x);
static_assert(alignof(u) == alignof(u.n));
int main() {} Kuszące może być przekonanie, że przedstawiona unia (konstrukcja union) pozwala przeprowadzać niejawną konwersję takich elementów jak czterobajtowa liczba zmien-noprzecinkowa na czterobajtową liczbę całkowitą. W języku C (ale nie C++) jest to rze-czywiście możliwe. Mimo powszechnego przekonania, że taka praktyka jest dozwolona w C++, w rzeczy-wistości tak nie jest (z jednym szczególnym wyjątkiem, który omówimy za chwilę). W C++ ostatni element składowy unii, do którego coś zapisano, nazywany jest aktyw-

nym elementem składowym unii i tylko z niego można w kodzie odczytywać dane. Dlatego poniższy kod jest nieprawidłowy — ponieważ odczytywanie z nieaktywnego elementu składowego unii prowadzi do niezdefiniowanego zachowania, które jest nie-dozwolone w przypadku funkcji constexpr:
union U {
 float f;
 int n;
};
constexpr int f() {
 U u{ 1.5f };
 return u.n; // niezdefiniowane zachowanie (u.f to aktywny element składowy unii)
}
int main() {
 // constexpr auto r0 = f(); // ten kod nie pozwala na kompilację
 auto r1 = f(); // ten kod się kompiluje, ponieważ nie użyto kontekstu
 // constexpr, choć wciąż mamy niezdefiniowane zachowanie
} Jak zapewne wiesz, funkcja typu constexpr, taka jak f() w poprzednim przykładzie, nie może zawierać kodu, który powodowałby niezdefiniowane zachowanie, jeśli zostałaby wywołana w kontekście constexpr. To czasami czyni ją interesującym narzędziem do zilustrowania pewnych kwestii.

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdział 2  Na co należy uważać? 61

Istnieje pewne zastrzeżenie dotyczące konwersji między elementami składowymi unii, które wiąże się z pojęciem wspólnej sekwencji początkowej.
Wspólna sekwencja początkowa Jak wyjaśniono w dokumencie na stronie https://eel.is/c++draft/class.mem.general#23,
wspólna sekwencja początkowa (ang. common initial sequence) dwóch struktur składa się z początkowych elementów składowych tych struktur, które mają odpowia-dające sobie typy zgodne pod względem układu pamięci. Na przykład wspólna sekwen-cja początkowa struktur A i B składa się z ich dwóch pierwszych elementów (int jest zgodny układem z const int, zaś float jest zgodny z volatile float):

struct A { int n; float f; char c; };
struct B { const int b0; volatile float x; }; W przypadku unii możliwe jest odczytanie wartości z nieaktywnego elementu składo-wego, jeśli odczytywana wartość jest częścią wspólnej początkowej sekwencji elemen-tów składowych (zarówno odczytywany, jak i aktywny). Spójrz na kolejny przykład:
struct A { int n0; char c0; };
struct B { int n1; char c1; float x; };
union U {
 A a;
 B b;
};
int f() {
 U u{ { 1, '2' } }; // inicjalizacja u.a
 return u.b.n1; // to nie jest niezdefiniowane zachowanie
}
int main() {
 return f(); // poprawne
} Warto zauważyć, że takie zabiegi na typach powinny być stosowane z umiarem, ponie-waż mogą utrudnić zrozumienie kodu źródłowego. Niemniej jednak mogą okazać się bardzo przydatne. Na przykład można je wykorzystać do implementacji ciekawych re-prezentacji wewnętrznych dla klas, które mogą mieć dwie różne formy (takich jak

optional czy string), co z kolei będzie ułatwiało przełączanie między nimi. Na tej pod-stawie można zbudować kilka użytecznych optymalizacji.
Typy intptr_t i uintptr_t Jak wspomniano już wcześniej w rozdziale, w języku C++ nie można bezpośrednio porów-nywać wskaźników do dowolnych miejsc w pamięci w sposób dobrze zdefiniowany. Jednak w taki sposób można porównywać wartości całkowite, które są powiązane ze wskaźnikami. Spójrz na kolejny przykład:

#include <iostream>
#include <cstdint>
int main() {
 using namespace std;
 int m,
 n;

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

62 Efektywne zarządzanie pamięcią w C++

 // zwykłe porównywanie &m i &n jest niedozwolone
 if(reinterpret_cast<intptr_t>(&m) <
 reinterpret_cast<intptr_t>(&n))
 cout << "m precedes n in address order\n";
 else
 cout << "n precedes m in address order\n";
} Typy std::intptr_t i std::uintptr_t są aliasami dla typów całkowitych, które z kolei są wystarczająco duże, aby pomieścić adres. W przypadku operacji, które mogą prowadzić do wartości ujemnych (np. odejmowanie), należy używać typu ze znakiem, intptr_t.

Funkcja std::memcpy() Ze względów historycznych (i dla zachowania zgodności z językiem C) funkcja
std::memcpy() ma szczególne właściwości, ponieważ może zainicjować cykl życia obiektu, jeśli zostanie odpowiednio użyta. Nieprawidłowe użycie std::memcpy() do ma-nipulowania typem wyglądałoby następująco:

// załóżmy, że takie rozwiązanie sprawdza się w tym przykładzie
static_assert(sizeof(int) == sizeof(float));
#include <cassert>
#include <cstdlib>
#include <cstring>
int main() {
 float f = 1.5f;
 void *p = malloc(sizeof f);
 assert(p);
 int *q = std::memcpy(p, &f, sizeof f);
 int value = *q; // niezdefiniowane zachowanie
 //
} Tego rodzaju rozwiązanie jest niedozwolone, ponieważ wywołanie std::memcpy() ko-piuje obiekt typu float do obszaru pamięci wskazywanego przez p, co efektywnie roz-poczyna w tym miejscu cykl życiowy obiektu float. Ponieważ q jest wskaźnikiem do obiektu typu int*, próba odwołania się do niego prowadzi do niezdefiniowanego za-chowania. Z drugiej strony poniższy kod jest poprawny i pokazuje, jak można wykorzystać funk-cję std::memcpy() na potrzeby manipulacji typem:
// załóżmy, że takie rozwiązanie sprawdza się w tym przykładzie
static_assert(sizeof(int) == sizeof(float));
#include <cassert>
#include <cstring>
int main() {
 float f = 1.5f;
 int value;
 std::memcpy(&value, &f, sizeof f); // ok
 // ...
}

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

Rozdział 2  Na co należy uważać? 63

W tym drugim przykładzie użycie std::memcpy() do skopiowania bitów z f do value roz-poczyna cykl życiowy zmiennej value. Od tego momentu można jej używać jak każdej innej zmiennej typu int.
Szczególne przypadki char*, unsigned char*
i std::byte* Typy char*, unsigned char* (ale nie signed char*) oraz std::byte* mają w języku C++ status specjalny, ponieważ mogą dosłownie wskazywać dowolne miejsce w pamięci i tworzyć aliasy dla wszystkiego (https://eel.is/c++draft/basic.lval#11). Z tego powodu jeśli musisz uzyskać dostęp do bajtów reprezentujących wartość obiektu, wówczas te typy będą ważnym narzędziem w Twoim arsenale programistycznym. W dalszej części książki będziemy czasami korzystać z tych typów podczas wykonywa-nia niskopoziomowych operacji na bajtach. Należy pamiętać, że takie zabiegi są z na-tury niestabilne i nieprzenośne, ponieważ szczegóły takie jak kolejność bajtów w licz-bie całkowitej mogą się różnić w zależności od platformy. Należy ostrożnie korzystać z takich niskopoziomowych narzędzi.
Funkcja std::start_lifetime_as<T>() Ostatnimi narzędziami, które omówimy w rozdziale, są funkcje std::start_lifetime_
as<T>() i std::start_lifetime_as_array<T>(). Wprawdzie były dyskutowane przez lata, ale zyskały na znaczeniu wraz z wydaniem standardu C++23. Ich rolą jest przyjmowa-nie jako argumentów czegoś takiego jak bufor nieprzetworzonych bajtów pamięci i zwracanie wskaźnika do obiektu typu T (wskazywanego przez ten bufor), którego cykl życiowy rozpoczął się. Dzięki temu od tego momentu można było używać obiektu, do którego prowadzi wskaźnik:
static_assert(sizeof(short) == 2);
#include <memory>
int main() {
 char buf[]{ 0x00, 0x01, 0x02, 0x03 };
 short* p = std::start_lifetime_as<short>(buf);
 // użycie *p jako skrótu
} To jest funkcjonalność niskopoziomowa, której należy używać ostrożnie. Celem jest umożliwienie implementacji rozwiązań takich jak niskopoziomowe operacje wejścia/ wyjścia na plikach czy kod przeznaczony do obsługi sieci (np. odbieranie pakietu UDP i traktowanie jego reprezentacji wartości, jakby był istniejącym obiektem) w czystym języku C++ bez wpadania w pułapkę zachowania niezdefiniowanego. Te funkcje bar-dziej szczegółowo omówimy w rozdziale 15.

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

64 Efektywne zarządzanie pamięcią w C++

Podsumowanie W tym rozdziale omówiliśmy niektóre niskopoziomowe i czasem nieprzyjemne narzę-dzia, których niekiedy będziemy używać. Celem było zwrócenie uwagi na potencjalne zagrożenia i przypomnienie: musimy być odpowiedzialni oraz tworzyć rozsądny i po-prawny kod, nawet mimo tego, że język programowania C++ daje pod tym względem dużą swobodę. Podczas tworzenia w dalszych rozdziałach tej książki zaawansowanych mechanizmów zarządzania pamięcią te niebezpieczne narzędzia czasami okażą się przydatne. Miej na uwadze zamieszczone w tym rozdziale informacje dotyczące elementów wymagają-cych ostrożności, korzystaj z tych narzędzi bardzo oszczędnie, ostrożnie oraz w sposób utrudniający ich niewłaściwe użycie. W następnym rozdziale przyjrzymy się kluczowym operacjom rzutowania, które są do-stępne w C++. Celem jest zrozumienie mechanizmów poszczególnych rodzajów rzuto-wania oraz tego, kiedy (i w jakim celu) należy go używać, abyśmy mogli następnie two-rzyć potężne abstrakcje zarządzania pamięcią, które chcemy wykorzystywać.

Poleć książkęKup książkę

https://helion.pl/rf/efzapa
https://helion.pl/rt/efzapa

https://program-partnerski.helion.pl

	!5-12_spis
	02

