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Rozdziat

Na co nale2y uwazacé? | 2

Zdecydowates sie przeczytac ksiazke o zarzadzaniu pamiecig w C++ i jeste$ gotowy za-
réwno na poznanie podej$¢ wysokopoziomowych, jak i na ,ubrudzenie rak”, aby uzy-
skac precyzyjna kontrole nad procesem zarzadzania pamiecia. Swietny plan!

Poniewaz bedziesz tworzy¢ kod zaréwno bardzo wysokiego, jak i bardzo niskiego po-
ziomu, musimy upewnic sie, ze jeste$§ Swiadomy pewnych kwestii. Dzieki temu unik-
niesz problemoéw i nie bedziesz tworzy¢ kodu, ktéry wydaje sie funkcjonowac, ale
w rzeczywistosci nie dziata, przynajmniej nie w sposéb przenosny.

W tym rozdziale zwrécimy uwage na niektére aspekty programowania w C++, ktore
bedg istotne w catej ksiazce, ale z ktérymi nalezy obchodzic sie ostroznie. Wprawdzie
moze to wygladac jak (bardzo) krétkie kompendium ztych praktyk lub zacheta do wpa-
dania w tarapaty, ale potraktuj to raczej jako sposoby na dobre wykorzystanie nieco
niebezpiecznych lub trudnych funkcji jezyka. Uzywasz C++, masz znaczng swobode
wyrazu i dostep do funkgji, ktore sg przydatne, jesli dobrze je znasz i rozumiesz.

Chcemy tworzy¢ kod, ktéry jest czysty i wydajny, oraz ksztattowa¢ odpowiedzialnych
programistéw. Sprébujmy osiagnac to razem.

W tym rozdziale oméwimy nastepujace zagadnienia:

B Sposoby, w jakie mozna wpas$¢ w ktopoty z kodem C++. Istniejg kwestie, ktérych
kompilator nie moze wiarygodnie zdiagnozowac, a takze sytuacje, w przypadku
ktorych standard C++ nie okre$la, co sie stanie. Tworzenie kodu, ktéry robi
takie rzeczy, to przepis na katastrofe — lub co najmniej zaskakujgce czy
nieprzeno$ne zachowanie.

B W szczeg6lnosci przyjrzymy sie, jak mozna doprowadzi¢ do problemoéw
podczas pracy ze wskaznikami. Poniewaz ta ksigzka omawia zarzadzanie
pamiecia, bedziemy czesto uzywac wskaznikéw i zwigzanej z nimi arytmetyKki.
Umiejetno$¢ rozréznienia miedzy wtasciwym i niewtasciwym ich uzyciem
bedzie bardzo cenna.

B Na koniec omo6wimy, jakie rodzaje konwersji typéw mozemy wykonywac bez
uciekania sie do rzutowania (to bedzie tematem nastepnego rozdziatu)

i dlaczego, wbrew powszechnemu przekonaniu, rzadko jest to dobry pomyst.

Naszym og6lnym celem bedzie nauczenie sie, czego nie powinni$my robi¢ (mimo ze
czasami bedziemy wykonywa¢ manewry, ktore to przypominaja) i unikanie tych prak-
tyk w przysztosci. Ponadto powinienes zrozumie¢, dlaczego postepujemy w taki sposéb.
W kolejnych rozdziatach skoncentrujemy sie na tym, co powinnismy robic i jak robi¢ to
dobrze!
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Rozne rodzaje zta

Zanim przejdziemy do omoéwienia konkretnych praktyk wymagajgcych szczegélnej
uwagi, warto przyjrzec sie gtéwnym kategoriom ryzyka, na jakie mozemy sie natknac,
jesli tworzony przez nas kod nie przestrzega zasad jezyka. Z kazda taka kategorig wiaze
sie pewien rodzaj nieprzyjemnosci, ktérych powinnismy unikac.

Zle sformutowany kod, bez wymaganej
diagnostyki

Niektore konstrukcje w jezyku C++ okre$lane sg jako zle sformutlowane, bez wyma-
ganej diagnostyKi (ang. ill-formed, no diagnostic required, IFNDR). W standardzie jezyka
czesto mozna natrafi¢ na sformutowania w stylu ,jesli [...], program jest Zle sformuto-
wany, bez wymaganej diagnostyki”. Gdy co$ jest IFNDR, oznacza to, Ze nasz program
jest uszkodzony. Wprawdzie moga wystapi¢ niepozadane skutki, ale kompilator nie
jest zobowigzany do informowania nas o nich (czasami kompilator nie ma wystarcza-
jacych informacji, aby zdiagnozowa¢ problematyczng sytuacje).

Naruszenia zasady jednej definicji (ang. one definition rule, ODR), do ktérych wroé-
cimy w dalszej cze$ci tego rozdziatu, zaliczajg sie do kategorii IFNDR. Istniejg jednak
inne przypadki, takie jak posiadanie obiektu globalnego o ré6znych wymaganiach wy-
réwnania (za pomoca alignas) w réznych jednostkach translacji (zasadniczo réznych
plikach zrédtowych) lub zdefiniowanie konstruktora, ktéry deleguje do samego siebie
bezposrednio lub posrednio. Oto przyktad:
class X {
public:
/I #0 deleguje do #1, ktéry deleguje do #0, ktdry...
X(float x) : X{ static_cast<int>(x) } { //#0

}
X(int n) : X{ n+ 0.5f } { //#1

}
bs
int main() {}
Warto zauwazy¢, ze kompilator moze wyswietli¢ komunikat diagnostyczny, ale nie jest
to wymagane. Nie chodzi o to, ze kompilatory s3g leniwe — w niektérych przypadkach
moga nawet nie by¢ w stanie dostarczy¢ informacji diagnostycznych! Dlatego nalezy
uwazac, aby nie tworzy¢ kodu, ktéry prowadzi do sytuacji [IFNDR.

Niezdefiniowane zachowanie

W poprzednim rozdziale wspomniatem o tzw. niezdefiniowanym zachowaniu (ang.
undefined behavior, UB). Przez programistéw C++ czesto jest ono postrzegane jako zro-
dto probleméw i bélu gtowy, ale odnosi sie do kazdego zachowania, dla ktérego stan-
dard C++ nie naktada zadnych wymagan. W praktyce oznacza to, ze jesli utworzysz kod,
ktéry zawiera niezdefiniowane zachowanie, wéwczas nie masz pojecia, co sie stanie
podczas wykonywania programu (przynajmniej jesli dazysz do otrzymania wzglednie
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przenosnego kodu). Klasyczne przyktady niezdefiniowanego zachowania obejmuja de-
referencje wskaznika nu11 lub niezainicjalizowanego — jesli to zrobisz, bedziesz mie¢
powazne problemy.

Z perspektywy kompilatoréw niezdefiniowane zachowanie nie powinno wystepowacé
(kod przestrzegajacy zasad jezyka nie prowadzi do UB). Z tego powodu kompilatory
przeprowadzaja ,optymalizacje woko6t” kodu zawierajacego niezdefiniowane zacho-
wanie, co moze prowadzi¢ do zaskakujacych efektow: usuniecie testéw i gatezi, opty-
malizacja petli itp.

Efekty niezdefiniowanego zachowania maja tendencje do lokalno$ci. Na przyktad w po-
nizszym fragmencie kodu istnieje test sprawdzajacy, przed uzyciem *p w jednym przy-
padku, czy p nie ma warto$ci null, ale istnieje co najmniej jeden dostep do *p, ktéry nie
jest sprawdzany. Ten kod jest uszkodzony (niesprawdzony dostep do *p to przyktad
niezdefiniowanego zachowania), wiec kompilator moze go przepisac¢ w taki sposob, ze
wszystkie testy sprawdzajgce, czy p nie ma wartos$ci null, zostang usuniete. W koncu,
gdyby p miato postac nullptr, to oznacza, Ze szkoda zostala juz wyrzadzona. Zatem kompi-
lator ma prawo zatozy¢, ze programista przekazat do funkcji wskaznik inny niz nu11!
int g(int);
int f(int *p) {
if(p !'= nullptr)
return g(*p); //w porzqdku, wiemy, ze p ma wartos¢ innq niz null
return *p; //ups, jezeli p == nullptr, wéwczas mamy niezdefiniowane zachowanie

}

W tym przypadku caty kod funkgcji f () mdgtby zostac przepisany przez kompilator jako
return g(*p), za$ polecenie return *p staloby sie nieosiggalnym kodem.

Potencjalne niezdefiniowane zachowanie kryje sie w r6znych miejscach jezyka, w tym
w przepelnieniu liczb catkowitych ze znakiem, dostepie do elementéw tablicy poza jej
granicami, wy$cigach danych itd. Trwaja ciagte wysitki, ktére maja na celu zmniejsze-
nie liczby potencjalnych przypadkéow niezdefiniowanego zachowania (do tego zadania
zostata nawet powotana specjalna grupa robocza SG12), ale prawdopodobnie pozosta-
nie ono czes$cig jezyka w dajacej sie przewidzie¢ przysztosci i musimy by¢ tego Swiadomi.

Zachowanie definiowane przez implementacje

Niektdre fragmenty standardu podlegajg tzw. zachowaniu definiowanemu przez im-
plementacje, czyli zachowaniu, na ktére mozna liczy¢ w przypadku konkretnej plat-
formy. Jest to zachowanie, ktére Twoja platforma powinna udokumentowad, ale ktore
nie jest gwarantowane jako przeno$ne na inne platformy.

Zachowanie definiowane przez implementacje wystepuje w wielu sytuacjach i obejmuje
obszary takie jak limity definiowane przez implementacje: maksymalna liczba zagniez-
dzonych nawiaséw, maksymalna liczba etykiet case w poleceniu switch, rzeczywista
wielkos¢ obiektu, maksymalna liczba wywotan rekurencyjnych w funkgcji constexpr, liczba
bitéw w bajcie itd. Inne dobrze znane przypadki zachowania definiowanego przez im-
plementacje to liczba bajtow w obiekcie typu int lub to, czy typ char jest ze znakiem,
czy bez znaku.
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Wprawdzie zachowanie definiowane przez implementacje samo w sobie nie jest Zré-
dtem probleméw, ale moze okazac sie ktopotliwe, jesli dazy sie do otrzymania przeno-
$nego kodu, a jednocze$nie opiera sie na pewnych nieprzeno$nych zatozeniach. Czasami
warto jawnie wyrazi¢ swoje zatozenia w kodzie za pomoca static_assert, gdy zatoze-
nie moze by¢ zweryfikowane w czasie kompilacji. Ewentualnie za pomoca podobnych
mechanizmoéw, ktére dziatajg w czasie wykonania, aby zda¢ sobie sprawe — zanim be-
dzie za pdZno — ze te zalozenia sg btedne dla danej platformy docelowe;j.

Spédjrz na przedstawiony tutaj kod funkcjimain():
int main() {
// w kodzie przyjeto zatozenie, ze wielko$¢ typu int wynosi 4 bajty,
// to nie jest przyktad przenosnego zatoZenia
static_assert(sizeof(int)==4);
// kod zostanie skompilowany tylko wtedy, gdy warunek jest prawdziwy...
}

0 ile nie masz pewnosci, ze Twdj kod nigdy nie bedzie musiat by¢ przenoszony na inng
platforme, staraj sie jak najrzadziej polega¢ na zachowaniu, ktére pozostaje zalezne od
implementacji. Jesli jednak musisz to zrobi¢, upewnij sie o zweryfikowaniu takich sy-
tuacji (najlepiej za pomocg wywotania static_assert, a jesli to niemozliwe, to w czasie
wykonania) i ich odpowiednim udokumentowaniu. Takie podejScie pomoze unikng¢
nieprzyjemnych niespodzianek w przysztosci.

Nieokreslone zachowanie
(niezdefiniowane w dokumentacji)

Podczas gdy zachowanie zdefiniowane w implementacji jest nieprzenosne, ale udoku-
mentowane dla danej platformy, zachowanie nieokreslone to takie, ktére nawet dla po-
prawnie napisanego programu z prawidtowymi danymi zalezy od implementacji, ale
nie musi by¢ udokumentowane.

Niektore przypadki nieokreslonego zachowania obejmuja stan obiektu po przeniesie-
niu (okreslany jako poprawny, ale nieokreslony, wiec bardziej chodzi o nieokreslony
stan niz zachowanie), kolejnos$¢ obliczania podwyrazen w wywotaniu funkcji, czyli czy
f(g(),h()) najpierw obliczy g() czy h(), wartosci w nowo przydzielonym fragmencie
pamieci itp. Ten ostatni przyktad jest interesujacy dla naszych rozwazan, poniewaz
wersja robocza (debug) programu moze wypetni¢ nowo przydzielone fragmenty pa-
mieci rozpoznawalnym wzorem bitowym, aby pomdc w procesie debugowania. Z kolei
zoptymalizowana wersja tego samego narzedzia moze pozostawi¢ poczatkowe bity
nowo przydzielonego fragmentu pamieci ,niezainicjalizowane”, wraz z bitami, ktére
mialy w momencie alokacji, aby w ten spos6b poprawi¢ wydajnos¢.

Zasada jednej definicji

Zasade jednej definicji mozna przedstawi¢ nastepujaco: w jednostce translacji moze
istnie¢ tylko jedna definicja kazdego ,elementu” (funkcji, obiektu w zakresie, wylicze-
nia, szablonu itp.), chociaz moze by¢ wiele deklaracji tego elementu. Rozwazmy naste-
pujacy fragment kodu:
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int f(int); //deklaracja

int f(int n); //toréwniez jest deklaracja

int f(int m) { return m; } //definicja

// int flint) { return 3; } // nie wolno tak zrobi¢ (ztamanie zasady jednej definicji)

W C++ unikanie naruszen zasady jednej definicji jest bardzo wazne, poniewaz te ,zto-
sliwosci” moga umkna¢ uwadze kompilatora i wpas¢ w kategorie IFNDR. Na przyktad
ze wzgledu na oddzielng kompilacje plikdw Zréddtowych, jezeli plik nagtéwkowy zawiera
definicje funkcji nieosadzonej, bedzie ona powielana w kazdym pliku Zrédtowym,
ktéry dotgcza ten sam plik nagtéwkowy. W efekcie kazda kompilacja moze zakonczy¢
sie sukcesem, za$ fakt istnienia wielu definicji tej samej funkcji w jednym projekcie
moze by¢ odkryty dopiero pézZniej (na etapie linkowania) lub wrecz pozosta¢ niewy-
kryty, co z kolei spowoduje chaos.

Btedne zachowanie

Trwajgce prace zwiazane z zapewnieniem bezpieczenistwa w C++ doprowadzity do
dyskusji nad nowym rodzajem ,ztosliwosci”, ktéra roboczo zostata nazwana btednym
zachowaniem (ang. erroneous behavior). Ta nowa kategoria ma obejmowac sytuacje,
ktore w przesztosci mogty by¢ traktowane jako niezdefiniowane zachowanie, ale dla
ktérych mozliwe bytoby przeprowadzenie diagnostyki i zapewnienie dobrze zdefinio-
wanego zachowania. Wprawdzie zachowanie to nadal bytoby niepoprawne, ale btedne
zachowanie w pewien sposéb ograniczatoby jego konsekwencje. Musze w tym miejscu
dodac¢, ze w chwili powstawania ksigzki prace nad koncepcja btednego zachowania s3
w toku, a ta nowa funkcjonalno$¢ jezyka moze pojawi¢ sie w standardzie C++26.

Jednym z przewidywanych zastosowan dla btednego zachowania jest odczyt niezaini-
cjalizowanej zmiennej, w przypadku ktérego implementacja mogtaby (ze wzgledéw
bezpieczenstwa) zapewnic stalag wartos¢ dla odczytywanych bitéw. Twoércy implemen-
tacji beda zachecani do diagnozowania btedu koncepcyjnego, ktéry pojawia sie na sku-
tek odczytu takiej zmiennej. Innym przypadkiem zastosowania jest sytuacja, gdy progra-
mista zapomni o zwrdceniu wartos$ci z operatora przypisania dla typu innego niz void.

Skoro przyjrzeliSmy sie juz podstawowym ,rodzinom” nieprzyjemnosci, ktére moga
dotkna¢ nasze programy, jesli nie bedziemy ostrozni, teraz mozemy zagtebic sie w wy-
brane z najwazniejszych obszaréw, ktére mogg przysporzy¢ nam ktopotéw. Zobaczmy,
czego powinnismy unikac.

Wskazniki

W poprzednim rozdziale oméwitem wskazniki w C++ pod katem tego, co reprezentujg
i co oznaczaja. Ponadto wyjas$nitem, czym jest arytmetyka wskaznikéw i jakie daje nam
mozliwos$ci. Teraz przyjrzymy sie praktycznym zastosowaniom tej arytmetyki, za-
réwno wlasciwymi, jak i niewtasciwymi przypadkami uzycia tego niskopoziomowego
(ale czasami cennego) narzedzia.
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Zastosowania arytmetyki wskaznikow w tablicach

Arytmetyka wskaznikow to przydatne, ale ostre narzedzie, ktdrego tatwo naduzyc.
W przypadku zwyktych tablic nastepujace dwie petle, oznaczone jako A i B, dziatajag
doktadnie tak samo:
void f(int);
int main() {
int vals[]{ 2,3,5,7,11 };
enum { N = sizeof vals / sizeof vals[0] };
for(int i = 0; i != N; ++i) //A
f(vals[il);
for(int *p = vals; p != vals + N; ++p) //B
T(*p);
}
Mozesz sie zastanawiac nad fragmentem vals + Nw petli B— to jest poprawny (i idio-
matyczny) kod C++. Istnieje mozliwo$¢ obserwowania wskaznika tuz za koncem tablicy,
mimo Ze nie wolno wéwczas odczytywaé wskazywanej przez niego wartos$ci. Standard
gwarantuje, zZe ten konkretny adres tuz za koncem tablicy jest dostepny dla programu.
Jednak nie ma takiej gwarancji dla kolejnego adresu, wiec zachowaj ostroznos¢!

Dopdki przestrzegasz zasad, mozesz uzywac¢ wskaznikéw do poruszania sie w przéd
iw tyt w obrebie tablicy. Jesli jednak przekroczysz granice i uzyjesz wskaznika, aby
wyj$¢ poza jeden element za koncem tablicy, wkroczysz na teren niezdefiniowanego
zachowania. Oznacza to, ze mozesz prébowac uzyskac dostep do adresu, ktéry nie znaj-
duje sie w przestrzeni adresowej Twojego procesu.

int arr[10]{ }; // wszystkie elementy sq zainicjalizowane z wartosciq zero

int *p = &arr[3];

p += 4; assert(p == &arr[7]);

--p; assert(p == &arr[6]);

p += 4; //to wciqz akceptowalne, o ile nie sprébujesz uzyskac¢ dostepu do *p

++p; // niezdefiniowane zachowanie, brak gwarancji dziatania zgodnie z oczekiwaniami

Wymienialnos¢ wskaznikow

Standard C++ definiuje, co oznacza, Ze jeden obiekt jest wymienialny wskaznikowo
(ang. pointer-interconvertible) z innym. Ta wymienialno$¢ oznacza, ze wskaznika pro-
wadzacego do pewnego obiektu mozna uzy¢ jako wskaznika do drugiego obiektu, za-
Zwyczaj poprzez rzutowanie reinterpret_cast (dokladniej oméwimy je w nastepnym
rozdziale), poniewaz majg ten sam adres. Ogélnie rzecz biorac, obowigzujg nastepujace
zasady:

B (Obiekt jest wymienialny wskaznikowo sam ze soba.

B Unia jest wymienialna wskaznikowo ze swoimi elementami sktadowymi
danych, a takze z ich pierwszymi elementami sktadowymi danych, jesli s3 to
typy ztozone.

B 7 pewnymi ograniczeniami x oraz y sg wzajemnie wymienialne wskaznikowo,
jesli jeden z nich jest obiektem, a drugi jest tego samego typu co pierwszy
niestatyczny sktadnik danych tego obiektu.
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W kolejnym fragmencie kodu znajduje sie kilka przyktadéw:

struct X { int njy };

struct Y : X {};

union U { X x; short s; };

int main() {
X X3
Yy
U u;
// element x jest wymienialny wskaZnikowo z x
// element u jest wymienialny wskazZnikowo z u.x
// element u jest wymienialny wskaZnikowo z u.s
// element y jest wymienialny wskaznikowo z y.x

}

Jesli probujesz uzy¢ operatora reinterpret _cast w sposob, ktéry nie przestrzega zasad
konwersji wskaznikéw, Twdj kod jest formalnie niepoprawny i nie ma gwarancji, ze
bedzie dziatat w praktyce. Nie réb tego.

W zaprezentowanych przyktadach kodu bedziemy czasami korzysta¢ z wtasciwosci
konwersji wskaznikéw. Pierwszy taki przyktad znajduje sie juz w nastepnym punkcie.

Wykorzystanie arytmetyki wskaznikéw
wewnatrz obiektu

Arytmetyka wskaznikow wewnatrz obiektu jest rowniez dozwolona w C++, cho¢ na-
lezy zachowac ostroznos$¢ przy jej stosowaniu (wykorzystaj odpowiednie rzutowania,
ktére oméwimy w nastepnym rozdziale, i upewnij sie, Ze operacje arytmetyczne na
wskaznikach sg wykonywane prawidtowo).

Na przyktad wprawdzie ponizszy kod jest poprawny, ale to nie posta¢, do ktérej stoso-
wania nalezy dgzy¢ (nie ma sensu i wykonuje zadania w niepotrzebnie skomplikowany
sposéb, choc¢ jest dozwolony i nie powoduje szkod):

struct A {
int a;
short s;

}s

short * f(A &a) {
// wymienialnos¢ wskaznikowa w dziataniu!
int *p = reinterpret _cast<int*>(&a);
ptt;
return reinterpret_cast<short*>(p); //dozwolone, cho¢ w ramach

// tego samego obiektu

}

int main() {
A a;
short *p = f(a);
*p = 3; //poprawnie, z formalnego punktu widzenia

}

W tej ksigzce nie bedziemy naduzywac tego aspektu jezyka C++, ale musimy by¢ swia-
domi jego istnienia, aby tworzy¢ poprawny kod niskiego poziomu.
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Réznice miedzy wskaznikiem i adresem

W celu wzmocnienia bezpieczenstwa sprzetu i oprogramowania prowadzone sg prace
nad architekturami sprzetowymi, ktére moga zapewnié forme ,,0znaczania wskaz-
nikdw tagami”, co z kolei umozliwitoby miedzy innymi sledzenie przez sprzet zrédta
pochodzenia wskaznikéw. Dwa znane przyktady tego rodzaju architektury to CHERI
(https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf?link_from_packtlink

=yes) oraz Memory Tagging Extensions — MTE (Linux: https://docs.kernel.org/
next/arch/arm64/memory-tagging-extension.htmi?link_from_packtlink=yes, Android:
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_
Memory_Tagging_Extension_Whitepaper.pdf i https://source.android.com/docs/
security/test/memory-safety/arm-mte?link_from_packtlink=yes, Windows: https://
raw.githubusercontent.com/microsoft/MSRC-Security-Research/master/papers/2020/
Security%20analysis%200f%20memory%20tagging.pdf?link_from_packtlink=yes).

Aby skorzystac z takich rozwigzan sprzetowych, jezyk programowania musi roz-
réznia¢ miedzy koncepcjami niskopoziomowych adreséw i wysokopoziomowych
wskaznikow, poniewaz te drugie mogg uwzgledniad fakt, ze wskaznik to cos wiecej
niz tylko lokalizacja w pamieci. Jesli kod koniecznie musi poréwnywac niezwigzane
ze sobg wskazniki w celu ich uporzadkowania, wéwczas mozna je rzutowac na
std::intptr_t lub std::uintptr_t i poréwnywac wartosci liczbowe zamiast faktycznych
wskaznikow. Warto zauwazy¢, ze obstuga tych dwéch typéw przez kompilator
jest opcjonalna, cho¢ wszystkie najwazniejsze kompilatory oferujg te mozliwosc.

Wskaznik null

Koncepcja wskaznika pustego (ang. null pointer) jako rozpoznawalnej wartosci dla
wskaznikéw, ktore nie prowadza do zadnej prawidlowej lokalizacji, siega czaséw
C.A.R. Hoare’a. W jezyku C, poprzez makro NULL, ten wskaZnik byt poczatkowo repre-
zentowany jako char* o wartos$ci 0, nastepnie jako void* o warto$ci 0, natomiast w C++
po prostu jako warto$¢ 0, poniewaz konstrukcje takie jak int *p = NULL; z typowanym
NULL byty dozwolone w jezyku C, ale juz nie w C++. Wynika to z bardziej rygorystycz-
nego systemu typéw w C++. Warto zauwazy¢, ze wskaznik o wartosci 0 nie oznacza
»wskazuj na adres zero”, poniewaz ten adres sam w sobie jest catkowicie poprawny
i jako taki jest uzywany na wielu platformach.

W C++ preferowanym sposobem wyrazania wskaznika pustego jest nullptr, obiekt
typu std::nullptr_t, ktéry konwertuje sie na wskazniki dowolnego typu i zachowuje
sie zgodnie z oczekiwaniami. Rozwigzuje to w C++ wybrane dtugotrwate problemy z li-
teratem 0, takie jak:

int f(int); //#0
int f(char*); //#1
int main() {
int n = 3;
char c;
f(n); //wywotuje #0
f(&c)s // wywotuje #1
f(0); // nigiednoznaczne przed wprowadzeniem standardu C++11,
/I natomiast poczgwszy od C++11, wywoluje #0
f(nullptr); // tylko poczgwszy od standardu C++11, jednoznacznie wywofuje #1
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Nalezy pamieta¢, ze nullptr nie jest wskaznikiem — to jest obiekt niejawnie konwer-
towany na wskaznik. Z tego powodu cecha std: :is_pointer_v<nullptr>zwraca warto$¢
false, za$ C++ oferuje oddzielng ceche o nazwie std::is null_pointer<T>przeznaczong
do statycznego sprawdzania, czy T jest typu std::nullptr_t, czy tez nie (z uwzglednie-
niem const ivolatile).

Odwotywanie sie do wskaznika pustego prowadzi do niezdefiniowanego zachowania,
podobnie jak w przypadku wskaznika niezainicjalizowanego. Celem uzywania nullptr
w kodzie jest uczynienie tego stanu rozpoznawalnym: nullptr to wyraznie okres$lona
warto$¢, podczas gdy niezainicjalizowany wskaznik moze mie¢ dowolng warto$c.

W jezyku C++ (w przeciwienstwie do C) operacje arytmetyczne na wskazniku pustym
sg dobrze zdefiniowane... o ile dodajemy do niego zero. Innymi stowy: dodanie zera do
wskaznika zerowego pozostaje w ramach poprawnego zachowania, ale dodanie czego-
kolwiek innego moze prowadzi¢ do nieprzewidywalnych efektéw. Istnieje konkretny
zapis dotyczacy tego w standardzie C++ (https://eelis/c++draft/expr.add#4.1). Oznacza
to, Ze ponizszy kod jest poprawny: w przypadku pustej tablicy wywotanie begin()
zwraca nullptr, natomiast size() zwraca zero, wiec funkcja end() w praktyce oblicza
warto$¢ nullptr+0, co jest zgodne z regutami.
template <class T> class Array {
T *elems = nullptr; //wskaznik do poczqtku
std::size_t nelems = 0; //liczba elementéw
public:
Array() = default; //=pusta tablica
// ..

auto size() const noexcept { return nelems; }

// uwaga: wartoscig zwrotnq moze by¢ nullptr

auto begin() noexcept { return elems; }

auto end() noexcept { return begin() + size(); }

}s

Do tego przyktadu z tablicami powrdcimy bardziej szczegétowo w rozdziatach 12., 13.
i 14. Pomoze on omo6wic kilka istotnych aspektow efektywnego zarzadzania pamiecia.
Na razie przyjrzyjmy sie innemu Zrédtu ryzykownych operacji programistycznych.

Manipulowanie typami

Kolejnym obszarem, na ktérym programista C++ moze wpas¢ w tarapaty, jest tzw. ma-
nipulowanie typami (ang. type punning). Przez manipulacje typami rozumiemy tech-
niki, ktére w pewnym stopniu obchodza system typow jezyka. Uznanym narzedziem
przeznaczonym do tego celu sg operacje rzutowania, poniewaz pozostaja one jawne
w kodzie Zrédtowym i (poza rzutowaniem w stylu C) wyrazajg intencje konwersji, ale
ten temat zastuguje na osobny rozdziat (nastepny, jesli sie nad tym zastanawiasz).

W tym podrozdziale przyjrzymy sie innym sposobom manipulacji typami, zaréwno
tym zalecanym, jak i tym, ktérych nalezy unikac.
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Manipulacja typami poprzez
elementy sktadowe unii

Unia to typ, w ktérym wszystkie elementy sktadowe znajduja sie pod tym samym ad-
resem. Wielko$¢ unii jest rowna wielko$ci jej najwiekszego elementu sktadowego, zas
wyréwnanie unii jest najscislejszym wyréwnaniem sposrod jej elementow.

Rozwazmy nastepujacy fragment kodu:

struct X {

char c[5]; short s;
boxs
// jeden bajt dopetnienia miedzy x.c i x.s
static_assert(sizeof x.s == 2 && sizeof x == 8);
static_assert(alignof(x) == alignof(short));
union U {

int n; X x;
bous
static_assert(sizeof u == sizeof u.x);
static_assert(alignof(u) == alignof(u.n));
int main() {}

Kuszace moze by¢ przekonanie, Ze przedstawiona unia (konstrukcja union) pozwala
przeprowadzac niejawng konwersje takich elementéw jak czterobajtowa liczba zmien-
noprzecinkowa na czterobajtowa liczbe catkowita. W jezyku C (ale nie C++) jest to rze-
czywiscie mozliwe.

Mimo powszechnego przekonania, Ze taka praktyka jest dozwolona w C++, w rzeczy-
wistosci tak nie jest (z jednym szczegdlnym wyjatkiem, ktéry oméwimy za chwile).
W C++ ostatni element sktadowy unii, do ktérego cos zapisano, nazywany jest aktyw-
nym elementem skladowym unii i tylko z niego mozna w kodzie odczytywac¢ dane.
Dlatego ponizszy kod jest nieprawidtowy — poniewaz odczytywanie z nieaktywnego
elementu sktadowego unii prowadzi do niezdefiniowanego zachowania, ktdre jest nie-
dozwolone w przypadku funkcji constexpr:
union U {
float f;
int n;
bs
constexpr int f() {
U u{ 1.5 };
return u.n; // niezdefiniowane zachowanie (u.f to aktywny element sktadowy unii)

}
int main() {
// constexpr auto r0 = f{); // ten kod nie pozwala na kompilacje
auto rl = f(); //ten kod sie kompiluje, poniewaz nie uzyto kontekstu
// constexpr, cho¢ wciqz mamy niezdefiniowane zachowanie

}

Jak zapewne wiesz, funkcja typu constexpr, taka jak f() w poprzednim przykitadzie, nie
moze zawiera¢ kodu, ktéry powodowatby niezdefiniowane zachowanie, jesli zostataby
wywotana w kontekscie constexpr. To czasami czyni ja interesujagcym narzedziem do
zilustrowania pewnych kwestii.
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Istnieje pewne zastrzezenie dotyczace konwersji miedzy elementami sktadowymi unii,
ktore wigze sie z pojeciem wspdlnej sekwencji poczatkowej.

Wspolna sekwencja poczatkowa

Jak wyjasniono w dokumencie na stronie https://eelis/c++draft/class.mem.general#23,
wspdlna sekwencja poczatkowa (ang. common initial sequence) dwéch struktur
sktada sie z poczatkowych elementdéw sktadowych tych struktur, ktére maja odpowia-
dajace sobie typy zgodne pod wzgledem uktadu pamieci. Na przyktad wspdlna sekwen-
cja poczatkowa struktur A i B sktada sie z ich dwoch pierwszych elementéw (int jest
zgodny uktadem z const int, za$ float jest zgodny z volatile float):

struct A { int n; float f; char c; };
struct B { const int b0; volatile float x; };

W przypadku unii mozliwe jest odczytanie warto$ci z nieaktywnego elementu sktado-
wego, jesli odczytywana wartos¢ jest czes$cig wspdlnej poczatkowej sekwencji elemen-
tow sktadowych (zaréwno odczytywany, jak i aktywny). Spojrz na kolejny przyktad:
struct A { int n0; char c0; };
struct B { int nl; char cl; float x; };
union U {
A a;
B b;
b
int f() {
Uu{ {1, '2" } }; //inicjalizacja u.a
return u.b.nl; //to nie jest niezdefiniowane zachowanie

}

int main() {

return f(); //poprawne
}

Warto zauwazy¢, ze takie zabiegi na typach powinny by¢ stosowane z umiarem, ponie-
waz mogg utrudni¢ zrozumienie kodu zrédtowego. Niemniej jednak moga okazac sie
bardzo przydatne. Na przyktad mozna je wykorzysta¢ do implementacji ciekawych re-
prezentacji wewnetrznych dla klas, ktére moga mie¢ dwie rézne formy (takich jak
optional czy string), co z kolei bedzie utatwiato przetgczanie miedzy nimi. Na tej pod-
stawie mozna zbudowac kilka uzytecznych optymalizacji.

Typy intptr_t i uintptr_t

Jak wspomniano juz wcze$niej w rozdziale, w jezyku C++ nie mozna bezposrednio poréw-
nywa¢ wskaznikéw do dowolnych miejsc w pamieci w sposéb dobrze zdefiniowany.
Jednak w taki sposéb mozna poréwnywac wartos$ci catkowite, ktore s3 powiazane ze
wskaznikami. Spéjrz na kolejny przyktad:
#include <iostream>
#include <cstdint>
int main() {
using namespace std;
int m,
n;
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// zwykte poréwnywanie &m i &n jest niedozwolone
if(reinterpret_cast<intptr_t>(&m) <

reinterpret_cast<intptr_t>(&n))

cout << "m precedes n in address order\n";
else

cout << "n precedes m in address order\n";

}

Typy std::intptr_tistd::uintptr_t sa aliasami dla typéw catkowitych, ktére z kolei sg
wystarczajgco duze, aby pomiesci¢ adres. W przypadku operacji, ktére moga prowadzic¢
do warto$ci ujemnych (np. odejmowanie), nalezy uzywac typu ze znakiem, intptr_t.

Funkcja std::memcpy()

Ze wzgledéw historycznych (i dla zachowania zgodnosci z jezykiem C) funkcja
std::memcpy() ma szczegdlne wilasciwosci, poniewaz moze zainicjowac cykl zycia
obiektu, jesli zostanie odpowiednio uzyta. Nieprawidtowe uzycie std: :memcpy () do ma-
nipulowania typem wygladatoby nastepujaco:

// zatézmy, zZe takie rozwiqzanie sprawdza sie w tym przyktadzie
static_assert(sizeof(int) == sizeof(float));
#include <cassert>
#include <cstdlib>
#include <cstring>
int main() {

float f = 1.5f;

void *p = malloc(sizeof f);

assert(p);

int *q = std::memcpy(p, &f, sizeof f);

int value = *q; //niezdefiniowane zachowanie

//
}

Tego rodzaju rozwigzanie jest niedozwolone, poniewaz wywotanie std: :memcpy () ko-
piuje obiekt typu float do obszaru pamieci wskazywanego przez p, co efektywnie roz-
poczyna w tym miejscu cykl zyciowy obiektu float. Poniewaz q jest wskaznikiem do

obiektu typu int*, préba odwotania sie do niego prowadzi do niezdefiniowanego za-
chowania.

Z drugiej strony ponizszy kod jest poprawny i pokazuje, jak mozna wykorzysta¢ funk-
cje std: :memcpy () na potrzeby manipulacji typem:

// zatézmy, Ze takie rozwiqzanie sprawdza sie w tym przyktadzie
static_assert(sizeof(int) == sizeof(float));
#include <cassert>
#include <cstring>
int main() {
float f = 1.5f;

int value;
std: :memcpy (&value, &f, sizeof f); //ok
Y/
}
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W tym drugim przyktadzie uzycie std: :memcpy () do skopiowania bitéw z f do value roz-
poczyna cykl zyciowy zmiennej value. Od tego momentu mozna jej uzywac jak kazdej
innej zmiennej typu int.

Szczegolne przypadki char*, unsigned char*
i std::byte*

Typy char*, unsigned char* (ale nie signed char*) oraz std::byte* majg w jezyku C++
status specjalny, poniewaz mogg dostownie wskazywac¢ dowolne miejsce w pamieci
i tworzy¢ aliasy dla wszystkiego (https://eel.is/c++draft/basic.lval#11).Z tego powodu
jesli musisz uzyska¢ dostep do bajtéow reprezentujacych wartosc obiektu, wowczas te
typy beda waznym narzedziem w Twoim arsenale programistycznym.

W dalszej czesci ksigzki bedziemy czasami korzystac z tych typow podczas wykonywa-
nia niskopoziomowych operacji na bajtach. Nalezy pamieta¢, ze takie zabiegi sa z na-
tury niestabilne i nieprzeno$ne, poniewaz szczegéty takie jak kolejno$¢ bajtow w licz-
bie catkowitej moga sie r6zni¢ w zalezno$ci od platformy. Nalezy ostroznie korzysta¢
z takich niskopoziomowych narzedzi.

Funkcja std::start_lifetime_as<T>()

Ostatnimi narzedziami, ktére oméwimy w rozdziale, sg funkcje std::start_lifetime_
>as<T>() i std::start_Tifetime as_array<T>(). Wprawdzie byly dyskutowane przez lata,
ale zyskaly na znaczeniu wraz z wydaniem standardu C++23. Ich rolg jest przyjmowa-
nie jako argumentéw czego$ takiego jak bufor nieprzetworzonych bajtow pamieci
i zwracanie wskaznika do obiektu typu T (wskazywanego przez ten bufor), ktérego
cykl zyciowy rozpoczat sie. Dzieki temu od tego momentu mozna byto uzywac obiektu,
do ktérego prowadzi wskaznik:
static_assert(sizeof(short) == 2);
#include <memory>
int main() {
char buf[]{ 0x00, 0x01, 0x02, 0x03 };
short* p = std::start_lifetime_as<short>(buf);
// uzycie *p jako skrotu
1

To jest funkcjonalnos$¢ niskopoziomowa, ktérej nalezy uzywac ostroznie. Celem jest
umozliwienie implementacji rozwigzan takich jak niskopoziomowe operacje wejscia/
wyj$cia na plikach czy kod przeznaczony do obstugi sieci (np. odbieranie pakietu UDP
i traktowanie jego reprezentacji wartosci, jakby byt istniejagcym obiektem) w czystym
jezyku C++ bez wpadania w putapke zachowania niezdefiniowanego. Te funkcje bar-
dziej szczegbétowo omoéwimy w rozdziale 15.
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Podsumowanie

W tym rozdziale omo6wiliSmy niektére niskopoziomowe i czasem nieprzyjemne narze-
dzia, ktérych niekiedy bedziemy uzywac. Celem byto zwrécenie uwagi na potencjalne
zagrozenia i przypomnienie: musimy by¢é odpowiedzialni oraz tworzy¢ rozsadny i po-
prawny kod, nawet mimo tego, Ze jezyk programowania C++ daje pod tym wzgledem
duza swobode.

Podczas tworzenia w dalszych rozdziatach tej ksigzki zaawansowanych mechanizmoéw
zarzadzania pamiecia te niebezpieczne narzedzia czasami okazg sie przydatne. Miej na
uwadze zamieszczone w tym rozdziale informacje dotyczace elementéw wymagaja-
cych ostroznosci, korzystaj z tych narzedzi bardzo oszczednie, ostroznie oraz w sposéb
utrudniajacy ich niewtasciwe uzycie.

W nastepnym rozdziale przyjrzymy sie kluczowym operacjom rzutowania, ktére sa do-
stepne w C++. Celem jest zrozumienie mechanizméw poszczegdlnych rodzajéow rzuto-
wania oraz tego, kiedy (i w jakim celu) nalezy go uzywa¢, aby$my mogli nastepnie two-
rzy¢ potezne abstrakcje zarzadzania pamiecia, ktére chcemy wykorzystywac.
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Opanuj zaawansowane techniki zarzagdzania
pamiecia w nowoczesnym C++

Zarzadzanie pamigecia w C++, jeden z najbardziej wymagajacych aspektéw tego jezyka programowania,
stanowi jednoczesnie klucz do tworzenia wydajnych i bezpiecznych aplikacji. W dobie rosnacych wyma-
gan dotyczacych optymalizacji kodu, zwtaszcza w systemach czasu rzeczywistego, grach i aplikacjach
wbudowanych, umiejetnos¢ efektywnego kontrolowania mechanizmoéw alokacji pamieci staje sie szcze-
gdlnie wazna kompetencja kazdego programisty C++. Ksiazka Patrice’a Roya, cztonka Komitetu
Standardow ISO C++, przedstawia kompleksowe podejscie do opanowania tych zaawansowanych
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Autor systematycznie prowadzi Czytelnika przez wszystkie aspekty zarzadzania pamiecia — od pod-
stawowych koncepcji cyklu zyciowego obiektéw, przez implementacje inteligentnych wskaznikow,
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implementacje detektorow wyciekéw pamieci, alokatoréw opartych na pulach i konteneréw gene-

rycznych. Szczegétowo omawia zaréwno tradycyjne podejscia, jak i najnowsze rozwiazania wprowa-
dzone w standardach C++20 i C++23, w tym polimorficzne zasoby pamieci (PMR) i mechanizmy
placement new.
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* implementacja wiasnych inteligentnych wskaznikéw i konteneréw

= techniki optymalizacji oparte na pulach pamieci

» praktyczne narzedzia diagnostyczne

* mechanizmy alokacji dla systemoéw o niskim op6Znieniu i aplikacji czasu rzeczywistego

* bezpieczne techniki manipulacji typami i obstugi wyjatkéw w kontekscie zarzadzania zasobami
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