Docker :
Up and Running

Build and deploy containerized web apps with
Docker and Kubernetes

Dr. Gabriel Nicolas Schenker

www.bpbonline.com

ii
Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55517-883

www.bpbonline.com

i1l

Dedicated to

My beloved wife Veronicah

iv

About the Author

Dr. Gabriel Nicolas Schenker has more than 30 years of experience as an
independent consultant, architect, leader, trainer, mentor, and developer.
Currently, Gabriel works as the lead architect in the office of the CTO at iptiQ by
SwissRE. Prior to that, he held the position of lead solutions architect at Maison,
of lead curriculum developer at Confluent, and of principal curriculum developer
at Docker. Gabriel has a Ph.D. in Physics, and he was a Docker Captain. He is a
Certified Docker Associate, a certified Apache Kafka Operator, a certified Apache
Kafka Developer, and an ASP Insider. When not working, Gabriel enjoys time with
his wonderful wife Veronicah and his children.

About the Reviewer

Shilpa Kaul has 15+ years of extensive experience with Enterprise Architecture,
Analysis, Design, Development and Cloud Migration. Currently working as
Application Modernization Consultant - HCL Google Cloud Ecosystem supporting
the enterprise client journey to cloud by analyzing their application portfolios
and translating them into actionable entities. Skilled in development of tools/
accelerators using Python/data analytics. Experience also includes working on
Docker, Kubernetes and cloud orchestration tools like Canonical Juju Framework.
AWS Certified Practitioner and Google Cloud Digital Leader certified. Passionate
about learning new technologies especially in areas of containerization, DevOps,
python and ML. In her free time she likes to spend time listening to music,
travelling and reading.

vi

Acknowledgement

I would like to express my deepest gratitude to my wife, Veronicah, who has been
my rock and my source of strength throughout this journey. Your unwavering
love and support have been invaluable to me, and I could not have accomplished
this without you. Your encouragement and belief in me have inspired me to keep
pushing forward, even on the most challenging days. Thank you for being my
constant source of love and comfort. This book is as much yours as it is mine, and
I am forever grateful for your partnership. I love you.

My gratitude also goes to the team at BPB for being supportive throughout this
process, which took longer than I initially expected.

vii

Preface

This book introduces the readers to Docker, practicing the readers in writing the
Docker commandsand how to create Docker files, images, creating containers. While
doing so, you get a stronghold on Docker tools like Docker Images, Dockerfiles, and
Docker Compose. The book explains the architecture of Docker, designing multi-
containers, understanding how to automate the work of containerization, working
with other tools such as Kubernetes and Jenkins, securing Docker containers, and
more.

This book is dedicated to developers, DevOps, QA automation, and operations
engineers interested in Docker containers and Kubernetes. No prior knowledge
of containers and container orchestration is needed as the book introduces the
concepts from the ground up. It is though highly recommended that the reader has
some basic knowledge of coding or scripting in one of the popular languages such
as JavaScript, Python, Java, NET C#, PowerShell, or Bash.

By the end of this book, the reader will become a successful developer or engineer
who can convert their complex stacks of applications into a single file and run it
with a single command, thereby simplifying the entire process of shipping and
deploying enterprise applications without worrying about their infrastructure.

The book is divided into 13 chapters. They will start from the basics of Docker
containers, progressing slowly to more elaborate topics such as building, testing,
shipping, and running individual containers and whole containerized applications
in Kubernetes on-premise or in the cloud.

Chapter 1: Explaining Containers and their Benefits — informs the reader about
what containers are and why they are crucial in modern software development. We
will start with a brief history of the evolution of containers and their surrounding
ecosystem. We will mention examples and present some case studies on where the
use of containers has brought significant benefits to the development, distribution,
and or maintenance of applications. We continue the chapter with an overview
of where containers are a good fit and where other technologies or approaches
may be appropriate instead. We will show how the use of containers and related
technologies brought a shift in the demand for skills and resulted in new job roles.
We will present some quantitative information that may convince readers, such as

viii

salary info, job stability, and career progression. We conclude the chapter with a
short recap of what the reader has learned.

Chapter 2: Setting Up Your Environment - will guide the reader step by step on
how to set up a great working environment for the development with and the
use of containers. We will provide easy-to-follow and step by step instructions for
both platforms, Windows 10 and Mac OS, on how to install and configure Docker
Desktop, Docker Compose, a terminal, and the Visual Studio Code code editor.

Chapter 3: Getting Familiar with Containers — familiarizes the reader with how to
download a first Docker image from the Docker Hub and run a container from this
image. They will get to know the most important characteristics or attributes of a
container, such as its name and status. Furthermore, they will learn how to stop
and remove containers as well as how to visualize what's really running inside a
container. Finally, the reader will list and analyze the log of a running container
and run their own processes in the context of a running container. In this chapter,
we will mainly use Docker Desktop and the terminal.

Chapter 4: Using Existing Docker Images — teaches the reader how to use existing
container images, such as ones for SQL databases locally on their computer. They
will learn how an image is made up of layers, and they learn to define and use
Docker volumes to persist and share data and how to configure applications
running inside a container. Tools used in this chapter are Docker Desktop and the
terminal.

Chapter 5: Creating Your Own Docker Image -leads the reader through creating
their own Docker images and shows how to tag and publish them to a container
registry such as Docker Hub. To author Dockerfiles, we will use VS Code, and for
all other operations Docker for the Desktop and the terminal.

Chapter 6: Demystifying Container Networking - introduces the Docker container
networking model and its single host implementation in the form of the bridge
network. This chapter also introduces the concept of software-defined networks
and how they are used to secure containerized applications. Furthermore, we
will demonstrate how container ports can be opened to the public and thus make
containerized components accessible to the outside world. Lastly, the reader is
introduced to network types that can span whole clusters of multiple nodes. We
conclude with some tips on how to excel in ajob interview when container network-
related questions are asked, and we provide a short recap of the key learnings. In
this chapter, we will mainly use the terminal and some simple Linux tools

ix

Chapter 7: Managing Complex Apps with Docker Compose — introduces
the concept of an application consisting of multiple services, each running in a
container, and how Docker Compose allows us to easily build, run, and scale such
an application using a declarative approach. Tools used in this chapter are Docker
Desktop, the terminal, and VS Code to author the various Docker Compose files

Chapter 8: Testing and Debugging Containerized Applications — elaborates on
how to significantly reduce friction in the development process by enabling hot
reloading and debugging of an application running inside a container. The reader
will also learn how to write and run automated tests for such an app and how to
instrument the app optimally. The reader will get some valuable tips and hints on
how to best prepare for an interview as a Docker developer. In this chapter, we
mainly use our code editor VS code as well as its integrated terminal.

Chapter 9: Establishing an Automated Build Pipeline — explains why no SW
development team can be successful without building up and/ or leveraging a fully
automated CI/CD pipeline. In this chapter, the reader learns how to build and use
the continuous implementation (CI) part of such a pipeline. Later, we will discuss
and compare some free and some commercial SaaS offerings and implement a
complete CI/CD pipeline using GitHub actions as an example. We then provide
some tips on how to prepare for a job interview for DevOps engineer covering
mainly the CI part. We conclude the chapter with a recap of the key learnings. The
tools used will be the terminal and VS Code.

Chapter 10: Orchestrating Containers— introduces container orchestration in
general and Kubernetes in particular. Kubernetes is currently the clear leader in
the container orchestration space. We will start with a high-level overview of the
architecture of a Kubernetes cluster and then discuss the main objects used in
Kubernetes to define and run containerized applications. Since many teams do
not want to manage their own cluster, we provide a brief overview of the most
popular fully managed Kubernetes offerings in the cloud. Finally, we discuss the
position of the container in the new context of so-called serverless computing.
Lastly, we will train the reader for a job interview where container orchestration-
related questions will be asked. In this chapter, we mainly use Docker Desktop
with its integrated Kubernetes, the terminal, and VS Code to author YAML files.

Chapter 11: Leveraging Docker Logs to Provide Insight into Your Apps -
shows that once your application is running in production, no outage is tolerated.
To prevent costly outages or readily fix them if they happen, you need insight

into the inner workings of you app. In this chapter, we will discuss how to collect
Docker and application logging information and use it to monitor your application,
how to get notified in the event of a critical event, and how to quickly find the root
cause in the event of a bug or an outage. We will be using Prometheus to collect
logs and Grafana to visualize key metrics.

Chapter 12: Enabling Zero Downtime Deployments - exemplifies how to deploy,
update, and scale applications into a Kubernetes cluster using different strategies
such as rolling updates or blue-green deployments. We will also explain how
zero downtime deployments are achieved to enable disruption-free updates and
rollbacks of mission-critical applications. To conclude this chapter, the reader is
provided with more tips and hints on how to excel in a job interview for a DevOps
position and a discussion of the key learnings.

Chapter 13: Securing Containers - introduce Kubernetes secrets to configure
services and protect sensitive data. The reader will learn how to provide trust in
container images and how to scan images to proactively identify and eliminate
vulnerabilities that bad actors could exploit. Finally, we will discuss the use of
software-defined networks, port, and protocol mapping as well as ingress and
egress rules to further firewall their precious applications.

xi

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://[rebrand.ly/gavpian

The code bundle for the book 1is also hosted on GitHub at
https://github.com/bpbpublications/Docker-Up-and-Running. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications” Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical

articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

xii

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

xiii

Table of Contents

1. Explaining Containers and their Benefits.........ccoevererereereuennnnnne 1
INErOAUCHON ..ot 1
SHUCHUT ...ttt 1
ODbJECHIVES ...ttt 2
What is @ CONtAINET? ...c.viiiiiiiiiiicc e 2
Evolution of containers and associated infrastructure...........cccocovvvevcurniunnnnes 3
Architecture and core capabilities ... 4
MaIN USE CASS...veueviriritiiitinietetitee ettt bbb 6
Standardize INfrastruCture..........coeciieiiieiicicic e 7
Turbocharge a microservice architecture............ccoovueucivininciniccniniecinens 8
Providing standard deployment model..........ccccoovuviviviiniiiiiiiiiiiennns 10
IMProved SECUTILYceveiiiiiiiiciitct s 10
Reducing friction in the development process..........ccoeeeuveerieeicueciecnninnincnncns 12
Skills, jobs, salaries, and career Pathsccceeeeceieereeenceeieeneeeneeenne 12

DEVCLOPETS ...ttt 12
DevOps eNGINEETS.......cvveviveiuriiiiiiieieteiiiicie ittt 13
QA auUtOMALION ENGINEETS ...ttt 13
Operations eNGIMEETScovviiviiiieirieieiiisieisieiiiint et 14
Salaries and career Paths.............ccoovvvvviveieiiiiieiiviiiiiisiiie s 14
CONCIUSION ottt 15
QQUESTIONIS veveeerrieeeiieeeeireeeeereeeeereeeesteeeeetreeessseeeesseeeessaesasssaaesssaeeessssseessssesessens 16
ANSTVCTS vttt 16
Job interview sample qUESHONS........c.cciiiviiiciiciicicc e 17
SamPle ANSWETSvcviviuiiiiiiiteiccccrc s 18

2. Setting Up Your Environment 21
INErOAUCHON ..ot 21
SHUCHUT ..ttt enn 22

ODbJECHVES ...ttt 22

xiv

Selecting and preparing a package manager.........ccoeeeueuereeerereneeeneseienenens 22
Installing chocolatey on Windows 10 o 11..........ccccevvvvviviiniivieenieieierennen, 23
Installing Homebrew on MacOS ... 25

Installing and using Docker DesKtopcccoeeueveieucieiniceieiicicce 26
Installing Docker Desktop on Windows 10 01 11cccccoevvvevvvinennieninnnnn. 26
Installing Docker Desktop on MacOS.............ccccovvviviiiiicciicsnisicieiian, 28
Using Docker Desktop to execute basic container commands......................... 30
Configuring Docker Desktopcccevvveieviiieieiiiiiniiiiiisiecieeeiessieieses 32

Selecting a code editor and useful plUGINScccvuvvviviiviiiiiiniiiiiiiiins 33
Installing VS Code 011 Windows 10cccevvieviiiioiiiiiiciiiiicicicicinnns 34
Installing VS Code 011 MACOScoovvviviiiiiiiiieiciieieiccie e, 34
Installing VS Code eXtenSIONS.cccouvvvvivieiviiiiiiiiiiiicisisieicsesieisieieins 35

Configuring and using a great terminal.........cccocoeueuvieiiiiniiiniiinicicein, 36
Installing Windows Termingl..............c.ccoovvevviieieioioieieriiisiccissesernnn, 37
Installing ITerm2 Version 3 for MacOSccccovvviniviniiiniiiiiiicininnns 37

Experimenting online with Docker and Kubernetes...........ccccccevucirununnnnee. 37
Play with DOCKEYcovuevoveiiriiiiiiieieiiiiiieiciice et 38
Play with Kubernetes.............cccovvvviivvniviiiiisisiiiiisinissiiiiiccssccsienens 40

CONCIUSION ottt 41

QUESEIOMS .ottt ettt sttt et s b ettt ettt 41
ANSTUCTS vttt 42

Job interview Sample GUESHIONS..............ccovevvivieviiiiiiiiiiiieieeic e 42

Possible answers to job interview questionsccceceueveieieiiiieeeccccinne, 43

3. Getting Familiar with Containers 45

INErOAUCHON ..ottt 45

SHUCEUT@ ..ottt 46

ODbJECHVES ...ttt 46

Downloading a first container imageccoovvviveiiieecicrnceene 46

RUNNIng a CONtAINETc.cveveiiiiiiet e 49
Running a container in detach mode................c.cccoovvvvviivncincincnneinnnn, 52

Running multiple instances of a CONtainercooovvvvvvirveenieieeiennnnn, 53

X0

Listing container images and container instances.........ccoooeeveveieerevninenenens 54
Listing Docker i1Agesoocevvveueviiiiiiiiciiieieieicieieiise e 54
LiSHING COMEATIETS ..ottt 56

Stopping and removing a container..........coovceeveiieeieiniieeeieee e 58
Stopping and removing containers in Docker Desktop and VS Code............. 61

Listing processes running inside a containercccooeeevvevvivecciniennicnencnns 65

Retrieving the log of @ CONLAINETcuevurviviniiicicicc s 67
Retrieving the log from the command line..............c.c.ocovvevevvvvieviiineicrinnnn, 67
Displaying container logs in Docker DesKtopccccovvvvvivvvnirniininnnn, 68
Displaying container 10gs it VS Codecoveveroeenioiiieiiiieicieiiicieinn, 69

Running an additional process inside an already running container.......... 70

CONCIUSION ..ottt 72

QUESTIONS .evieeiieeeie et eeteeeteeeeteeette e tae e taeeesaeeesseeesseeesseeesaaessseesssaeassasssasssaesseans 73
ANSTVCTS vttt 75

Job interview sample qUESHONScceuiiiiiiiiiiciccc e 75

SaMPLE ANSWEL'S .ecvevrertteteicietett bbb 75

4. Using Existing Docker Images.........cccceeueuerererensnrururenenes 77

INtrOAUCHON ot 77

SHUCEUT@ ..ottt 77

ODbJECHIVES ...ttt 78

Running a SQL database locally.........ccceviviviriniiriiininiiniciincccenne 78
Running a PostgreSQL database Serverccouvvivvvviinenieiiieieinnan, 78
Working with the databaseccooeeveiiviviioiesiiiiiiiciciieeeeses 82
Accessing the database from another containerccococovvvvvvviiciennnnnn, 84
A simple node JS app to access PostgreSQL...........c.cccocvviviviviovniiiiniiinnnnnn, 85

Running a no-SQL database locallyccccoeueiiieinieriiiiiiiicccnne, 88
Accessing MongoDB from a different containerccococovvvvivvviiniiinnnnnns 91
A simple Python app to access Mongo DB...............ccccovvevoiiniiiiinniircinnnnn, 91

Investigating the image layers model..........cccocuovuevuriricicincrninnicicecaes 93
What is @ Docker Tage?c.ccovviiviiiiiiiniiiiiiiiiicieiicitcssecs s 94

The layered fileSYStemccocovvviviviviiiiiiiiiiieieiceicicie s 94

xvi

The mutable container lAYercovvevvvvveereriviieiiiiieieieicisieieie s 96
Docker copy-0n-write MeCHANISTc.cvvieeieieiiiiiiiiiiiiiciiceese e, 97
Using volumes With CONAINETSc.cueueumiueuieeiiieiieieeeieieeee e secenne 98
Creating, inspecting, and deleting Docker VOIUMEScccovvurvivrinriininnn, 99
Mounting a volume into @ CONLAINETcovvevevevvirieiiiieieseiinieieiiiiis 101
Mounting a host folder into @ containerococovvvvvvvivnininsiinniinn, 103
Configuring an app running inside a container..........ccccoeeveveveveierereiinncnen. 105
CONCIUSION ...ttt esas 107
QQUESTIONIS 1eveeeireeeeiieeeeiieeeeeteeeeereeeeeaeeesetaeeeetsaeeeessaeeessseeesssesassssesesssseesssssaeennes 108
ANSWETS .ot 109
Job interview sample qUESHIONS.......cceeiieieictiiii 110
Job interview sample anSWeTScocecueiriririeiciiireieiees e 110
5. Creating Your Own Docker Images 113
INtrOdUCHON ...t 113
SHUCHUT ...t 113
ODbJECHIVE ..ttt 114
Creating a custom Docker imageccouveueieieeieiniieeeee s 114
Creating an image interactivelyfcccovvvvvvvvvnicinininiiiniiiiiciiins 114
Authoring a DOCKerfileoocvivviieiieeiiiiiiiiiiiiiiiiiieicceee s 118
The Docker image build process...............cccvveveveviieieiiiiesieiicinisieiiiieiernnns 119

The FROM KeYWOT ...t s 122

The COPY and ADD Keywords..........ccoveveeeieeieiiiiioiiiiiiiccceeiceieeeee s 123

The RUN KeYTWOT .o.evvvevieieiiieieiiiiiicciccieecie e 125

The WORKDIR KeYTWOTcoovviiiiiiiiiiiiiicicicisisisiciinsce s 126

The CMD and ENTRYPOINT Keywords..........cccvvevniiieniiiiiiiiiisiiiisnis 127

The EXPOSE KeYWOTd........ccoovuiiiniiiiiniiiiiieisiiiicsisisssecssecis s 130
Mutlti-step DOCKETfIlEScvuvvrvimiiiiiiiiciiiiiciiicit i 131
Dockerfile best PraCEICESvvuiiiiiiiiiiiiiieiicieic e 134
Importing @ Docker iagecovvvevevoieiiieiiiiieieicinieeiiie e 134
Building a Docker imageccovvvvueuiueiicininiiicccsccs s 136

Leveraging the Docker BUIld Kitueooueeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeenes 139

Tagging Docker IMages.coeueueiiieinieieieiiiccc e 140
Creating an account on Docker Hub..........ccooviiieiiiiiic 141
Publishing DOCKEr IMAZES......c.cueureurremereurieireeieeiseeseeseieeseseeeseeseseesesessenns 142
Publishing to a personal ACCOUNL..............ccovvvvvieviiiiiiiiiiiiciceeeiiies 142
Publishing to an organizationcccccveveeievevnieieiiiieeesiseieieiiee s 144
CONCIUSION oottt s 146
QQUESEIONS c.eeieeeiieeiie e et eeteeeteeeteeeeaeeesaeeeaeeesaeeessseesseaesseeesseesssaessssessseessssennnes 147
ANSTVTS wvvvviiiiieieietic e 147
Job Interview sample qUESHIONS........ceveveveieiieiiieeec 148
Job interview sample anSWeTScccvveveiieieiiiicccicciee s 149
6. Demystifying Container Networking 151
INtrOAUCHON oot 151
SHUCHUT@ ottt 152
ODbJECHIVE ..ttt 152
Explaining the container network model.........cccccoeovuviviiininicnninccninincnen 152
Discussing the bridge networki..........coceeiiionceinicciicece, 155
Inspecting @ NettOTK...........oovvevevvieiiieiiiieiiicieeictcee e 156
Creating a new bridge network................ccocvvvivvivvvviciniiniiniiiiciiiine, 158
Analyzing the network stack of a containerccoovveevvvieeicionnierennns 158
DNS name resolution on a bridge networkcccoovvviiviniiiiiiinnnn, 161
Elucidating container ports ...t 162
AULO MAPPING POTES oot 163
Explicitly mapping portsccoeevevvveeievovinieiiiiiisiiissiesesisisieisie e 166
Creating and running a containerized REST APlcccccovvvvviniiiinnnn. 167
Discussing the none and host Networks..........ccceurrieininciccccinicice. 169
The host HEtWOTK ..ottt 169

The 10N NELWOTK.......ovviviviiiiiiiiiieiiieiciciciectc e 171
CONCIUSION ..ttt 172
QQUESEIONS .eieeeiieeie et ettt e e eetteeetteeeaeeeaaeeesaeeesseeesseeessaeesseesssaessssessseessssennnes 173
ANSTETS vttt 173

Mastering job interview question..........cceeeeueveiecieieiieieieeeciee s 174

xviii

Sample answers to the job interview quUestionscccceecuvccivieciccecinnannn. 175
7. Managing Complex Apps with Docker Compose..........cccourereenes. 177
INtrOAUCHON oot 177
SHUCHUT@ ottt 177
ODbJECHIVE ..ttt 178
Explaining the docker-compose SyntaX..........coeceeuiceirenccieiniceeninsisencnenns 178
Imperative versus declarative SYNAXcoeevvvvveieivieieviiiiiciiiceeinas 178
Inspecting a simple Docker compose file..............ccovvveiieiiniiiiiiiiiiiinnnns 179
Using build inSHUCHONS.cccoviiiiiiiiiiiciiicieicicieiciciieics s 181
USING MEEWOTKS ..ot 181
Authoring your own Docker-compose file ..o, 183
Preparing a multi-service application ..., 183

The API SEYUICE 1 JAUA c....eueeeeeirieiisieieeieieeeet ettt 183

The API service it INET 5.X ..c.cvviiiuiiiiiiiiiiiiisisiccsiccice s 190

THe WebD SEITUICE.......cvvmiviiiiiiiiisciiiieietiticis et s 197
Writing your first docker-compose fileccccoouivvniieiiiiciiiiinnan, 200
Building and running all or individual services........ccooeueurirerereirncrennnnen. 204
Preparing the database....................ccccvvivvviiiviniiiiiiiiniiiiiccccs 204
Building service with Docker CompoSecovvevevevevieioiiieieiiiiinieiaiinian, 208
Pushing images 10 a4 1eQISITY w....ccovevevevieeieiiiieieisicce i 208
Running an applicationccovvvviveinnninsinisiiiiniiicccecss 209
Running, restarting, stopping, and removing individual services 211
Logging with Docker COMPOSEccvvevvvvvveieieiiieiciciiieieiiie e, 212
Advanced usages of Docker COMPOSE........covuvuiverreininininiireiiieecceines 212
Defining dependerncies bettoeen Services.uwmrimiviniiivieiniiiiriiiiininiiniainns 213
SCAIING (@ SETVICO.....ovveivieiiiiieieiiieie ettt 215
Defining a project NAME..............ccovvvveviiviisniiiiisiiiseis s 217
Using docker compose 0VEITIAescoovvieeeeieiiiiiiisiiiiiiicicicicieeiias 218
CONCIUSION ..ttt 220
QQUESTIONS weveeiireeeeiieeeeiieeceeteeeereeeeteeeeetaeeeetsaeeeessaesessseeersseaeessssesesssseesssssaeennes 221

Job interview sample qUESHIONS.........cceveveieiiiiiniicc s 221

xix

Sample aNSWerSccvveuerevevrieieieeiereieines

8. Testing and Debugging Containerized Applications

Introduction ..o
SHUCHUTE ..
ObjectiVe.....o it
Enabling hot reload in a container
Hot reloading a .NET application................
Hot reloading a Node]S application.............
Hot reloading a React]S application.............

Debugging an app running inside a container..........ccocoeuevevevereveveiennineninnnnes

Debugging a Java application......................
Debugging a .NET application....................
Debugging a Node]S application.................
Debugging a Python application..................

Writing and running unit and integration tests...........ccccceevvvevnineicniennns

Instrumenting a containerized app...............

Instrumenting a Java application

Application [evel [0GQINGcvvvurviuiueiiiiiiiiisiiiisisii s
Using Spring Boot ACHUALOTS.........cocovvvviiniiiiiiciiiciie s,
ConclUSIONcvvvvcciiicicccecnes

QUESHIONS weveeiireeeeireeecire e e re e erae e

ANSTOCTS v eeeseiieeeeaeea

Job Interview sample questions.....................

Sample answers to interview questions.......

9. Establishing an Automated Build Pipeline

INtrodUuctioneeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e

SHUCEUTC oottt e

ODbjJectiVes.....ovcuiueueiiiiccce

Building a Docker image using GitHub actions ..o

Preparing an application and a GitHub repository..............cccocvvvvivinininnnn,

Introducing GitHub actions and workflows

222

223
223
223
224
224
225
226
228
232
232
237
241
244
247
252
253
253
255
256
257
257
258
258

XX

Adding a build Docker image wOrkflotwcccccoevviviicniiiiciniiniinnnn, 269
Creating a complete CI pipeline.............ccoovvvvvevevivieiiiieieieiiiieieiciieein, 271
Using Jenkins to setup a build pipeline..........ccooeeveivieeiiiinniniiciiiicnnes 276
A complete CI/CD PIPelinecocvveivivviiiiniieiinionccsiisiniisissesiesininnn, 277
Creating a CI Pipeline............coovvvevevoieieiivoiiieiiiiiieeiceeieee s 278

A complete CI pipeline in JenKins.............ccccovvvviniiiviniiiniiiicieccnnnns 283
Adding continuous Aeliveryc.covvveieveveieviiiieiiiiieeescice s 290
Discussing some cloud-based SaaS offering for your CI/CD pipeline293
AZUTE DVOPS .ot 294
AWS DEVOPS c.ovvieiisiiisiitii et 295
GIELAD ..o 297
CONCIUSION oottt s 300
QQUESHIONS c.evieeeiieeiecte et eete e teeetaeeetteeetaeesaaeeesseessaseesseaessaessseesssaessssesssaesnssennnes 300
ANSTVTS wvvvviiiiieieietic e 300
Job Interview sample qUESHONS.......c.ceiiiriiiciiiiiiiccec e 301
ANSTVCTS wvvvviiiieieteiic et 302

10. Orchestrating Containers 303
INtrOAUCHON oot 303
SHUCHUT@ ..ttt 303
ODbJECHIVES ...ttt 304
Distributed application architecture.............cocceuvieccueinininieiniicnnicciennaen 304
Patterns and best Practices........oocveueueieueveiieieieiici 307
Loosely coupling COMPONENEScovvevvieeiereviniciiiieieiiiseieseiisieieeiie, 307
Preferring stateless over stateful COMpOnentsccoovvvvvvvvvnnnininnnn, 307
USINgG Service AISCOVLTYuovvuevevivieieiiiiiieieiiiisieieseiise et 308
Routing calls between cOMPONENts.............covveieievvvieieriiiieeiiiiesieseiiieieins 309
Load balancing trafficcccoovvveviviiiiiiiiiiiiicicicicccic 310
Programming defensivellyccoceveviveveieioieieiiiiiieieiieeeie 310
Guaranteeing redundancyyco.covvvevvieniiiiininiiiiieiciceeeee s 311
What is an orchestrator? ... 312

The responsibilities of an orchestrator............cceevveeceinincncnecnes 312

xxi

Reconciling the desired State................oovvevevvvvieieiiiiieieiiieieicieeeis 312
Replicating and global Services..............ccovvvvcvieiiiciviiiiiiiiiiciciccieeiis 313
Enabling service diSCOUCTY..........coovviiiuiiviiiniiiiiiiisiiiciciiicisiciiiccsciiiia 314
Providing routing SErviCes..........owvvvvieievoviieieiiiinsieseiisieieiiie e 314
Distributing work by load balancing..................ceveivivicinaiiiiiiinininnns 315
Dealing with fluctuating load by SCAliNgcccovvvvviviiiiiiiniiiicinicnnn, 315
Facilitating Self-Nealingccooeevevoivieriioieniiiiiiieiciciee e 316
Enabling zero-downtime deployments............cc.coovevrvivveieivieeiniieiernnn, 317
Providing affinity and location awareness...............ccoovvveveeevciiisiveennnnn, 318
SECUTTEY 1.ttt 319
Secure communication and cryptographic node identify............cccccovvvvevnnnen. 319
Secuire networks and network Policies...........cccvvvvicieiiiiiciiiciicceeee 320
Role base access control (RBAC) ... 320
SOCTEES...oviveviietiiet ettt s 320
COMECIE FTUSE ..ottt 321
RETVEISE UPHIINE c..ovvvvviieiiieectcet e 321
Facilitating introSpection............ceeevvvevieiovoiieieisriiieieieiiie e 322
Overview of popular orchestrators. ..., 323
KUDEINELES ... 323
DOCKET STOATTL ...ttt 324
Apache Mesos and Marathon ..., 325
Amazon AWS ECS....oooovvivioiiiiiiiiiiiiiiiiicicitstee e 326
Microsoft Azuure ACS ..ottt 327
Understanding the architecture of Kubernetes..........cccocvueuruvcunccrnccunencn. 327
Master and Worker NOAes..............cccovvvvevcieieiiiiiiiiiiice e, 330
POS ..ot 331
The pod life CYCLe.........cooviviviiiiiiiiiiiicicicicicciciii 333
WOTKING With POAS........ocvvveiieiviiiiciciieieiciie s 335
ReplicaSets and Deployments.............cooccveveveieiiiiieieieiinieieiiieieieissiesennns 341
Working with a ReplicASet............c.cccocvvviviviiiiiiiiiiiiciccicciii s 342
Working with a Deployiment ..o, 346

SOIDICES wvvvvveviieeeeiie et see ettt s s st e s vttt e s ettt e s s ttae s st s e sstressnsaaees 350

xxii

Context-based TOULINGoovvveieiiviiiiiiiiiiisicieeeee e 354
Leveraging managed Kubernetes offerings in the cloud........ccccouvuruuceeee. 355
Amazon AWS Elastic Kubernetes Service............cccouvvivviniivvicivicnnnnnan, 356
Microsoft Azure Kubernetes SErviceccovvvvvvuieiieievissisisiiiiieiiiannn, 360
GOOGLE GCP ...ttt 364
Discussing containers in the context of serverless..........ccocccveeuvccureerneucnncs 367
CONCIUSION «.eveitniiictetceete ettt ettt sesesenens 368
(QUESEIONS . evveeeiieeiieeeieeeteeetteeeteeetaeeetaeeetaeeeaaeeesseesssseesseaessaessseeessaessnsessseesnssennnes 368
ANSWETS vttt 369
Job Interview sample qUESHIONS.........ccoeveveviiiiiniicc s 370
Possible answers to interview questions..........ccceeevevevieiinieiiiccciinnes 370
11. Leveraging Docker Logs to Provide Insight into Your Apps.......ceceeueueuenencee 373
INErOAUCHON ...ttt ettt sttt enes 373
SEIUCEUTE .ttt ettt st b e 373
ODJECHVES ..ttt 374
Monitoring your platform ... 374
LOG CRTICS ..ottt 374
Centrally collection 10gSccoviiviiiiiiiiiiiiicicsicisicisisicisietsiisc e 375
MELTICS ..o 376
Dashboardscccovivvvciiniiiiiiiiiiiicisiccc 377
ALBTES oot s 378
RUN DOOKS ... 379
Collecting container 108ccocueveveieieiiiiiieiic e 379
Scraping container metrics using Prometheus.........ccoccvveuvecuniciniennicunnnns 383
Monitoring Docker metrics With CAAVISOTccvevvveverivieieriiiniiriiiiieiians 383
Monitoring application key using Grafana..........cccceeeveeveveieieicieeniniercinnnen, 388
Defining alerts ... 393
Finding the root cause of an ISSUEc.cccuvieuriuciriciniciiciicceecesciee 394
CONCIUSION .ttt et s sr et sb et sae e 396
Job interview qUESHIONS........ccuiieieiiieiciiiiiccc s 396

Possible answers to the job interview questions...........cccoeeeeueiriecucuncnunnans 396

xxiii

QQUESEIONS c.eeieeeiieeie et ecteeeteeeteeeteeeeaeeesaeeeaaeeesseesssseesseaessaessseesssaesssseesssessssennnes 398
ANSTWETS vt 398

12. Enabling Zero Downtime Deployments 401
INtrOdUCHON ... 401
SHUCEULE ... 401
ODJECHVES ...ttt 402
Establishing a sound versioning strategycccccoeueuervverrevecnieirenncrsinennnn. 402
Using rolling updates and rollbacks.........ccoceveiiieiniieierniiciciececen 404
Enabling blue-green deploymentscccoveeiiininiiiiiininiccciennes 414
Realizing canary releases..........ccoouiiiiuieicinicinieeieieiesecscsesessne 422
Canary releases With GlOO.........ccccuruirimriniciniinii e 426
CONCIUSION ..ottt 434
REfEIENCES ...ttt 434
QQUESEIONS c.evveeeiieeie et ettt ee e eetaeeetaeeeaeeeaaeeesaeesssseesseeesseessseesssaessnseessaessssennnes 435
ANSWETS vttt 435
Job Interview sample qUESHIONS.........ccoeveveviiiiiniiccc e 436
Possible answers to interview questions...........coceeueveerereineeeneiniciereisenens 436
13. Securing Containers 439
INtrOdUCHON ... 439
SHUCEULE ... 440
ODJECHVES ..ttt 440
Using Kubernetes secrets..........coouiiiiiiiiiiciiiicicccccscscenines 440
Explaining Kubernetes SeCrets............owuivvveeiviiieeoiisissoiiieieieineesnns 440
Declaratively defilting SECTescocovvveiiiiiiiiiiiiiciieciessee s 441
Imperatively defining SECTOLS..........covvivviiiiiiieiiiiisice s 443

Using secrets in @ POdcuveuevevieeieieiieicieie s 445
Mapping secrets to the filesystemn............ccoovvvviviviiiniiiiiiiiiisciiiias 446
Secrets and environment VAriablesccocvvveiiiiiiiiiiiiiiiii 448
Trusting CONLAINETSceeviiiiieiiet s 450
Scanning container images for vulnerabilitiesccccovvviinivninninnnes 451

Firewalling apps running in containersc.cooeeeuevererereieceneneeesenesnnnens 454

xXX10

Software-defined NetWOTKSc.cccocvviviviiiiiiiiiiiiiiiiecc e 454
Port and protocol MAPPINGS..........ccevvvieieieviiieieiiiieieieiseieseise s 455
Ingress and €gress TUIEScccvviviiuvivvicniciiiiiciiiiciciic s 455
Docker security best practices........cooeueueeeieiniiieieiiiiecic 457
Check YOUT THUAGESouvvvvvieiieieriiieievieieete e 457
Never 1Un as privilegedccccvvevvvininiiviiiiiiiiinicie s 457
Only allow read access to a root file SYStem............oocvvvvvevvvriiiiiieerernnn, 458
Read-only filesystetn on KUbernetes..............cocccvcvvicviviviniiiiiiiiiiiccciccia 458
Running a plain Docker CONEATIETccovvviviiiiiiiiiiiiciisiece 461

Scan for vulnerabilities and SECTetscovvvvvvvveeieiviieieiiiiciciieeiern, 461
Scanning for VUINErabilitesocvvvvviiiiiiiiicciiiccce s 461

Do not expose the Docker daemon SOCketcccovvvvvvniviiniiiniicnninnn, 462
Network namespace of the BoSt...............cccvvvveiiiviieeiiiiieiiiiieeise 462
CONCIUSION ..ttt 463
Job Interview qUESHIONS........cciveveiiieriiiicc s 463
Possible answers to the job interview questions..........c.ccevevevcicciecirinninnn. 464
QQUESEIONS c.eeveeeiieeie et ettt e e e etteeetaeee e eeaaeeesaeessseeesseaesseeesseesssaessnsessssessssennnes 466
ANSWCTS vttt 466

Index 469-476

CHAPTER 1

Explaining
Containers and their
Benefits

Introduction

In this chapter, you will learn what containers are and why they are so important in
modern software development. We will start with a brief history of the evolution of
containers and their surrounding ecosystem. We will mention examples and present
some case studies on where the use of containers has brought significant benefits to
the development, distribution, and/or maintenance of applications. We will show
how the use of containers and related technologies brought a shift in the demand for
skills and resulted in new job roles. We will present some quantitative information
that may convince readers, such as salary info, job stability, and career progression.
We conclude the chapter with a short recap about what the reader has learned so far.

Structure

In this chapter, we will discuss the following topics:
e Whatis a container
e Evolution of containers and associated infrastructure
e Architecture and core capabilities
e Main use cases and case studies

e Skills, jobs, salaries, and career paths

2 Docker: Up and Running

Let us start by describing what a container is.

Objectives

In this chapter, the reader will learn what containers are by giving a very familiar
analogy and the most important use cases of containers. We will also learn ways
in which containers can help us to significantly reduce the friction in the software
development life cycle and, on top of that, how containers can make the software
supply chain more secure and resilient against cyber threats.

What is a container?

In this section, we want to provide you with a high-level description of what a Docker
container is. A container is a process running on an operating system, such as Linux,
which is protected by namespaces and CGroups. This is a very simplified picture,
but it helps create a mental model in our heads. We will discuss namespaces and
CGroups in more detail later in this chapter. Contrary to common belief, a Docker
container is not some lightweight virtual machine (VM), although, in many regard,
a VM and a container look and behave similarly. Whilst a VM is a whole virtual
computer including a full operating system and all its drivers and interfaces, a
container is only containing the so-called user space with its application. A container
does never contain the Kernel of an operating system. Rather the container or the set
of containers uses the Kernel of their host computer:

Containerized Applications

A
Virtual Virtual Virtual r 1
Machine Machine Machine
212 < || m||Oo||o||w
App A App B ol = o o o o o
< (| < o [=1 o o o
< < < << <
Guest Guest Guest
Operating Operating Operating
System System System Docker
Hypervisor Host Operating System
‘ Infrastructure * Infrastructure

Figure 1.1: Virtual machines (VMs) versus Docker containers

Explaining Containers and their Benefits 3

Evolution of containers and associated
infrastructure

This section provides a short history of the evolution of containers and the associated
infrastructure. Docker did not invent containers. Docker made containers popular
by making them easy to use. It is similar to what Apple did with the iPhone. The
iPhone was not the first smartphone, but Apple brought the idea of smartphones to
the masses by making them easy and intuitive to use. Docker did a similar job with
containers.

To better understand software containers, let us look around us and come up with
a good analogy. In this case, we take physical containers as an example. You know,
those big iron boxes that have a well-defined length, width, and height. They are
used widely to ship goods around the globe. Certainly, you have seen a container
ship transporting merchandise from China to Europe or the USA live or in the
media. But traditionally, before those shipping containers existed, people had to
transport goods by different means. Prior to the invention of the wheel, goods were
transported in sacks or baskets on the shoulders of people or on the back of specially
trained animals such as donkeys.

The invention of wheels and later engines made transportation of merchandise a
bit more efficient since with a cart, a train, a steamboat, or a truck, we were able
to transport much bigger quantities at a time over much longer distances. But at
the same time, we started to transport more types of goods. At times the handling
of those goods also became more complicated. What did not change through time,
though, was the need to unload goods from one means of transportation onto another
one. Let us take an example, wheat that is produced in Ukraine and then shipped to
Africa, where it is used to bake bread. Farmers in Ukraine grow wheat, and when
itis ready to harvest, they transport the grains with their tractors to the next village
and unload itinto a grain storage tank. Trucks will be loaded with the grain and ship
it to the next port, most probably to Odessa. There they unload the wheat into big
ships that will then carry massive amounts of grains to the destination port in Africa.
From there again, trucks will pick up loads of those grains and transport them to the
mill, and so forth. You will agree that during the many unload and load processes
that are time-consuming and tedious, a lot can go wrong. Some waste is produced,
or part of the goods can be stolen by corrupt workers, to just name a few issues.

The introduction of containers, those big and standardized iron boxes we mentioned
previously, revolutionized the shipping industry. Since the dimensions of a shipping
container are standardized, the whole ecosystem around it could start standardizing
as well. Truck, train, and ship makers could start to produce vehicles that are doing
nothing but transport one or many containers from location A to location B. Shippers
could start to buy those standardized vehicles and then standardize the process of

4 Docker: Up and Running

shipping around them. Ports and other hubs could start using standardized tools
optimized for handling containers such as cranes or forklifts.

Now, having said that, we can easily see that the unloading and loading process has
become much simplified. There is no need to open a container anymore during this
process. In fact, containers are often sealed to make sure that they have not been
opened in transit. With this, there is also less danger that part of the load gets lost or
wasted in the process of changing the means of transportation. The shipper, in most
cases, does not care what exactly is inside a container and how it has been packaged,
to avoid any damage during transportation. For the latter, the producer of the goods
is responsible. They best understand how their goods need to be handled to avoid
any damage and, as such, are best qualified to fill the container in the first place.
Once arrived at the final destination, the recipients of the goods are, in turn, most
qualified to unload the container and handle the goods the right way. Shippers, in
the meantime, only care about a limited number of things, namely, the place from
where to pick up the container, its weight, and the destination to where they must
transport it. They may also care about if the container needs to be connected to a
power source; for example, if the goods in the container need to be cooled, then
those containers will need power for the cooling, yet the shipper is not responsible
for the cooling, only for the power needed by the cooler in the container.

This analogy will help give you a clear picture of why the introduction of shipping
containers has been such a paradigm change in the industry. So much has improved
with this new invention. Software containers represent the exact same paradigm
change in the software industry. Prior to having software containers, the Software
Development Life Cycle (SDLC) was similarly complex and non-standardized as
the shipping of goods was. But the introduction of software containers streamlined
all tools and processes around the building, securing, testing, shipping, and running
applications.

Architecture and core capabilities

Now, we are ready for a high-level description of the architecture and the core
capabilities of Docker. Let us present a high-level architecture diagram of a system
able to run Docker containers. The following illustration shows how a host system
on which Docker has been installed looks like. Any computer or server that has the
Docker daemon installed is sometimes called a Docker host.

Explaining Containers and their Benefits 5

REST interface

Docker Engine

libcontainerd libnetwork graph plugins

containerd & runc

Layer Capabilities Other OS
namespaces Control Groups Union filesystem functionality
pid, net, pic, mnt, ufs cgroups Overiay, AUFS,
device mapper, etc.
Linux OS

Figure 1.2: Docker high-level architecture

In the preceding diagram, we can see three main elements, all with grey backgrounds:
e At the bottom, we have the Linux operating system
e Inthe middle, we have the container runtime
¢ Finally, the Docker engine sits at the top

The enabling factors for containers are low-level Linux—or, more specifically,
Unix—features such as namespaces, control groups (cgroups), layer capabilities,
and so on. All those are building blocks and are used by the container runtime and
the Docker engine. With the help of Linux namespaces, Docker can encapsulate
applications that run inside a container. Note that any application is made up of one
to several processes. All these processes will run in the same namespace defined by
the enclosing container. Examples of namespaces are the process namespace or the
network namespace. cgroups can be used by containers to limit how much of the
available resources the processes inside the container can use. Resources are CPU
time, the amount of memory or disk, the available network bandwidth, and more.
By having this throttling mechanism in place, the system administrator can avoid
situations in which a single malicious container tries to monopolize all available
resources of the host system and, as such, starve all the other applications running
in different containers on the same host.

To be able to run containers on a host, normally, we need some low-level libraries.
In the case of Docker, these are containerd and runc. runc is a low-level library
providing very basic container runtime support. containerd, in turn, builds on
top of runc and provides more higher-level support for containers and container

6 Docker: Up and Running

images. Originally both have been part of the bigger Docker engine daemon but
have later been broken out of this monolithic structure and modularized. Docker
did donate containerd and runc to the Cloud Native Computing Foundation
(CNCEF). You may know this organization from other important software it owns,
such as Kubernetes.

The container runtime, made up of runc and containerd is managing the life cycle
of containers. It enables the pulling of container images from a central image registry,
instantiates a container from that image, and initializes and runs the container.
Furthermore, the runtime enables us to stop and restart or remove containers from
the system.

The Docker engine augments the container runtime by providing additional features
such as some networking libraries, the support for plugins used to extend the engine,
and finally, a REST interface through which all container-related operations can be
automated. In this book, we will frequently use the Docker Command Line Interface
(Docker CLI). This tool is one of the main consumers of the Docker engine’s REST
APL

Main use cases

In this section, we want to present a list of the main use cases for Docker containers.
In the following, we want to describe some of these use cases in more detail.

Prior to the advent of containers, developers would develop a new applications.
Once the application was completed by the definition of the developers, they handed
it over to the Quality Engineering (QE) department. The quality engineers then
tested the application according to the specifications. If everything was OK, then QE
handed the application over to the IT operations (IT OPS) department. The IT OPS
engineers then tried to install and run the application on servers they had configured
before. Ideally, and if they were lucky, the developers had provided some kind of—
hopefully—accurate documentation on how to install and configure the application.
The situation was not ideal but manageable. It got a bit out of control, though,
when in an enterprise, many teams developed many different applications. If those
applications needed to be installed and run on the same set of production servers
to optimize resource usage, things got quickly quite complex. Each application
normally has some dependencies on libraries and frameworks. Unfortunately, not
all applications use the same libraries and frameworks, or even worse, they use the
same libraries but in different and sometimes incompatible versions. Think of two
applications written in Java. One uses Java 8, and the other, a more modern one, uses
Java 17. The IT OPS service providers had to really have their act together and be
creative in how they could put all those different requirements under a single hat,
that is, run the applications on the same servers without breaking anything.

Explaining Containers and their Benefits 7

You may understand that in such a situation, upgrading applications introduces
major risks. Anew release needed careful planning and testing that could easily take
months and bind a lot of engineering and management resources. This all meant a
lot of friction in the software supply chain. But nowadays, companies are not happy
with new releases every few months or so. The requirementis to deploy new features
in a short time, ideally daily. Companies that do not follow the path of continuous
delivery will struggle or even go out of business. There are enough competitors out
there that are waiting to pick up where your company failed to deliver. What can
we do?

Standardize infrastructure

The first step was to Introduce Virtual Machines (VMs). This way, one could easily
divide the resources of a physical server among several VMs running on this very
same machine. Then OPS engineers would deploy one application per VM, and thus,
solve the problem quickly. Each VM is like a complete and impermeable sandbox,
and thus, everything inside of one VM is shielded from all the other applications
running in the other VMs.

Sadly, this solution fell apart quite quickly with the advent of the microservice
architecture. Now, a single application suddenly was made up of many pieces, the
microservices. In theory, every microservice could be written in a different language
using different frameworks and libraries. With that, we are back to square one. Some
clever engineers wanted to solve the problem by only packing a single microservice
into a VM. But this is a huge waste. VMs are quite heavyweight. They contain a full
operating system such as Linux or Windows Server. Now imagine all this for just a
single microservice. It looks like we are using a whole container ship to transport a
single truckload of wheat.

The solution to this maze came with the introduction of what looks a lot like an
extremely lightweight VM, the Docker container. It is not a VM, though, mind you,
as it does not contain a whole operating system and also does not provide the same
level of isolation as a VM. At the same time, it provides enough isolation for an
application or an application service packaged into it. It encapsulates the service
and its dependencies in the form of libraries and frameworks. For some, the Docker
container looks like the holy grail of modern software development.

Like the introduction of physical containers in logistics—you know, those
standardized metal boxes used to ship goods—has revolutionized the shipping
industry. Docker containers have similarly helped to revolutionize the IT industry.
While the introduction of virtualization in the form of VMs has made the cloud
possiblein the first place, containers represent the next paradigm shiftin the industry.
By standardizing how we ship and run the software, we have given a whole new
industry of infrastructure and service providers a chance to thrive. Operating systems

8 Docker: Up and Running

have been created that are optimized to host containers. Container orchestration
engines such as Kubernetes or Docker Swarm have been created and popularized.
Many tools focussing on containers have been built. A whole ecosystem of software
is centered around containers. Most prominently, this can be seen by browsing the
project page of the CNCEF, which you can reach via the following URL: https://www.
cncf.io/projects/.

Developers package their application services into containers and, on top of that,
add supporting libraries and frameworks to the package. Then they hand over those
self-contained containers to QA engineers that test them or operation engineers that
will run them. For QA engineers and operation engineers alike, a container, in this
sense, is just a black box with some well-defined interfaces. This black box is coming
in a standard form, though, and thus, the engineers can treat them all equally. This
is true for all types of applications shipped in a container. If an operations engineer
has a container host at hand that can run a container, then most likely, it can run any
other container too. This is not a false promise but true for almost all cases, except
some special edge cases.

We can thus look at containers as a way of packaging applications or application
services, all their dependencies, and supporting frameworks and libraries in a
standardized way. Not surprisingly, Docker came up with the following slogan for
containers: “Build, ship, and run anywhere.”

Turbocharge a microservice architecture

As applications have grown in complexity and the range of features they cover,
developers and software architects have been looking for a means to break the
monolithic structure of an application apart and modularize it. If too many
developers were working on the same monolithic application at the same time, there
was a real danger that they did step on each other’s feet. Deploying code changes
became more and more difficult due to the fact that the work of all developers had
to be coordinated.

The solution was to break down the big and complex applications into smaller, less
complex pieces that ideally were somewhat loosely coupled with each other. This
way, one could assign such a piece or module of software to a team consisting of a
small group of people. This team could then work independently from all the other
teams and evolve their module. Again, this was possible due to the fact that their
module was loosely coupled to the other modules and interacted with them through
well-defined interfaces. This was the birth of the so-called micro-service architecture.

In this new architecture, such a software module is now called a microservice. As
we mentioned previously, microservices can be developed independently from
each other and, as such, also have their own release cycle. A microservice was then
compiled and packed into an executable or into, say, a JAR or WAR if you were using

Explaining Containers and their Benefits 9

Java as your coding language of choice. A microservice could then be deployed side
by side with other microservices onto a single host, a bare metal server, or a virtual
machine (VM). A microservice could also be exclusively deployed to a dedicated
server if one wanted to run it in isolation for better protection or if the service was
resource hungry and needed a lot of CPU or memory when running.

Although, in principle, this architecture looks simple, in practice, there were a few
challenges to overcome. Let us assume the case where multiple microservices run on
the same host. In this case, we were facing the following potential problems:

e Every microservice running on the same host was running in the same
context, so to speak. They all used the same process, user, and network
namespaces. They all were fighting for the same resources, such as CPU
and memory or IO. A malicious service could easily compromise the other
services running in the same context. A service could be very aggressively
monopolizing available resources and, at the same time, starving all the
other services, resulting in the so-called noisy neighbor problem.

e Let us assume all microservices were written in Java, but not every service
used the same version of Java. Thus, the infrastructure team had to make
sure to have all required versions of the Java Runtime Environment (JRE)
installed on the host. Things got even worse if the different teams were using
different languages and frameworks to develop their respective service. Just
imagine a situation where team A developed service S1 in Java 8, team B
developed service S2 in Python 2.7, team C used Node JS 15.x to implement
service S3, and so on. In this case, the poor infrastructure team had to make
sure all of those runtime environments were installed and maintained on
the host. This was a huge burden and often resulted in quite a mess. To
make things worse, often, different versions of the same framework were
incompatible with each other and could not co-exist on the same host.

Now, let us assume we want to avoid all the preceding problems by placing each
microservice onto a dedicated host. But this creates another bunch of problems, as
follows:

e Using a dedicated server or VM for each microservice is most often a huge
waste. A somewhat reasonable VM can easily cost several dozens of dollars
per day, and at the same time, its CPU will most probably remain mostly idle
the whole day with just a single microservice residing on it. The problem is
that we cannot just provision the cheapest, low-power VM, though, since the
VM needs to be able to handle the occasional peek loads of the microservice,
which can by far exceed the average load.

e Ifourapplicationisunderload, we may need to scale up certain microservices.
Scaling up and down additional VMs when a microservice needs to scale
when the load on the application changes significantly can take a long time.

10 Docker: Up and Running

Here, a long time means several minutes, which is not acceptable for high-
volume applications.

e Last but not the least, we should also be conscious about our environment.
More servers mean more energy consumption. Yet our cloud providers are
far from being carbon neutral at the time of this writing.

The solution once again is containers. Microservices can be encapsulated into
containers, and multiple containers can be packed on a single VM to share the
available resources. Containers can scale out and in near instantly, in a matter of
milliseconds or a few seconds at most.

Providing standard deployment model

An additional benefit of using containers is the fact that IT operations engineers
can focus on the specifics of their role. They are good at provisioning infrastructure
such as networks, clusters, routers, and so on. They are also good at monitoring
this infrastructure. The use of containers helps in standardizing infrastructure and
processes associated with it. When thinking of servers or cluster nodes, every one of
those is almost identical all the time, and it is just another container host. There is no
need to install any specific frameworks or libraries on such servers. The only thing
required is an OS optimized to host containers such as CoreOS.

Therefore, operations engineers or, more specifically, system reliability engineers
(SREs), are not required to be familiar with the internal details of application services
running inside containers as those containers are supposed to be self-contained and
include everything necessary to successfully run the service on any compatible
container host. This way, SRE can look at a container and treat it as if it were a
black box. This is not much different from how a shipper today looks at a physical
container. They do not care so much about what is inside but just the fact that they
need to transport the container from A to B.

We will look into this use case in more detail in Chapter 10, Container orchestration and
Chapter 12, Enabling zero-downtime deployments.

Improved security

It is no secret to us that cyber-attacks are on the rise. Every day we hear in the news
of high-profile companies that have been under attack and that highly sensitive data
got stolen from their servers. Often important data gets encrypted, and the attackers
ask for money, mostly in the form of cryptocurrency, to unlock the data. Sensitive
data ranges from personal data such as names, phone numbers, and e-mail addresses
to financial data such as credit card numbers or bank account info. Depending on
the sector, it can also be sensitive health-related information that gets stolen. Apart

Explaining Containers and their Benefits 11

from customer data, the attackers can also steal company secrets. Luckily the use of
containers can help us in mitigating the risk of such events. Through the use of Linux
low-level functionality—we call them Linux primitives—an application running
inside a container is by default more secure than the same application running
natively on a server or VM. By using Linux namespaces, different applications are
sandboxed from each other. And through the use of Linux cgroups we can limit
the amount of resources each containerized application can request and thus avoid
scenarios where a malicious application can starve all the other applications running
on the same server.

Since container images are immutable, it is straightforward and simple to use special
tools that scan all the layers of an image for Common Vulnerabilities and Exposures
(CVEs). By identifying CVEs and eliminating them, we harden our applications and
further improve their security.

We can add an additional layer of protection on top of our containers by using
content trust. With content trust, the author of a Docker image digitally signs it. The
recipient can then verify this cryptographic signature and make sure that the image
is indeed originating from the claimed source and that the content of the image has
not been tampered with on its way to the destination. This way, we can avoid so-
called man-in-the-middle (MITM) attacks.

Since applications running in a container are running inside their own namespace,
they are protected from the outside world. Each container defines a new user and
process namespace. If your application defines a user Bob, and another application
running in a different application also defines a user Bob, then these two users have
nothing in common, as they are living in different namespaces. It is like the real
world, where a person named Bob Doe living in Dallas has nothing to do with Bob
Doe living in New York. The postal service can easily distinguish those two people
via their addresses. In that regard, the City, Street, and house number work as
namespaces and can be used to uniquely identify a person whose name alone may
not be unique. On Linux, every process has an associated process ID. The fact that a
Docker container associates a new process namespace with each container makes it
possible and easy to isolate processes from each other, although they are running on
the same computer or VM. Namespaces are only one part of the benefits, though. The
other ones are cgroups. cgroups allow us to define how many resources a container
may consume. Resources are things like the number of CPU cores, amount of RAM,
and network bandwidth, to just name the most important ones. By giving us the
ability to limit the resource consumption of a container, we can limit the so-called
noisy neighbor problem. We will talk more about security and containers in Chapter
13, Securing a Container.

12 Docker: Up and Running

Reducing friction in the development
process

By using containers during the development of software, developers have the
ability to develop and test their applications in a production-like environment right
on their own computers. If their application uses a database such as PostgreSQL,
they can run this database inside a container right on their local machine. Similarly,
they can run other infrastructure or middleware such as document databases like
MongoDB, caches like Redis, blob storage such as AWS S3 compatible blob storage,
search engines such as ElasticSearch, and many more on their laptop or desktop
computer. The only requirement for them is to have enough RAM available. Usually,
a minimum of 16 GB of RAM gets you going, but 32 GB is better. With the ever-
lower prices for memory, though, this should not be a problem. We have seen
many developers using beefier laptops with up to 64 GB of RAM. The ability to
run all these containers locally makes for a much-improved developer experience
and a much-shortened feedback cycle. Instead of relying on shared servers or cloud
resources that may be in an ever-changing state, developers can now have their very
own setup that is not polluted by data from other developers or bogged down by
the activity of other team members. We talk more about this in Chapter 8, Testing and
debugging containerized applications.

Everything you have been told so far can, in principle, also be achieved without the
use of containers, but with a much bigger effort and resulting maintenance burden.
Containers have become the de facto global standard, and with this, it is so much
simpler to implement and enforce best practices.

Skills, jobs, salaries, and career paths

In this section, we are going to look into the required skills, new job roles, salaries,
and career paths related to Docker containers.

Looking at a company that practices agile software development and invests in
continuous delivery, we can see a high demand for roles with the following skills:

Developers

Developers are expected to have a strong understanding of Docker containers
and how to use them to reduce friction in their daily development workflow. If
a candidate has advanced container skills and is proficient in using containers,
building custom container images, and running applications consisting of several
containers locally on their machine, he or she has a clear advantage over competing
candidates. Finally, if you can credibly show to have a working knowledge of and
familiarity with Kubernetes, you are definitely in a good position.

Explaining Containers and their Benefits 13

DevOps engineers

Companies are also desperately looking for DevOps engineers that master Docker
containers and Kubernetes. If you can prove your expertise in setting up a fully
automated CI/CD pipeline, either from scratch or based on infrastructure provided
by cloud providers such as Microsoft Azure, Google Cloud, or AWS, then you are in
a good position. Intimate familiarity with Kubernetes as the deployment target is a
huge advantage.

These days companies develop applications that have to be up and running all the
time, 24x7. At the same time, applications need to be updated all the time, mainly
when adding new features to them. Those updates should happen at any time while
requiring zero downtime. Thus, you should be familiar with concepts such as rolling
updates, blue-green deployment, and canary releases. It is an advantage if you have
worked with tools such as Helm on Kubernetes. Authoring Dockerfiles or Docker
Compose files should be a breeze for you.

You should also have a good understanding of Linux and, more specifically, of Linux
namespaces and cgroups that you will leverage to better protect the applications or
services running inside a container. Using the possibilities of cgroups you know how
to limit the amount of resources a container has access to. With Linux namespaces,
you isolate the different services running in the various containers from each other,
providing optimal encapsulation and security.

QA automation engineers

Let us talk about testing now. QA automation engineers are in high demand. Relying
on manual testing is a thing of yesterday and is not scalable. Thus, manual testing
should only be used for exploratory testing. Consequently, you are a specialist in
writing automated tests. Following the recommendations of the so-called test
pyramid, you write a lot of what we call component tests, where the system under
test runs in a container in isolation, and your test code probes this application or
service in the container via its public APIs, such as REST API or messages when
using a service bus. People also call this black-box testing. The test code will run
in a container as well, as will the other services the system under test uses, such as
databases and message queuing systems or caches. That said, the industry expects
you to not only be familiar with the latest test frameworks but also to be very
familiar with Docker containers and the use of multi-container applications. It is a
big bonus if you are familiar with Kubernetes and can perform or run your tests on
a Kubernetes cluster to simulate a production environment as closely as possible.

You should have experience in using popular Docker images that allow you to run
a relational or no-SQL database such as PostgreSQL or MongoDB, a message queue
such as RabbitMQ or ActiveMQ, blob storage simulators compatible with the AWS

14 Docker: Up and Running

S3 format, distributed cache such as Redis, search engines such as ElasticSearch and
more, to support you in more efficiently test your assigned services and applications
in isolation and locally or on a build agent in the cloud.

Operations engineers

Finally, let us talk about operations engineers. You should be able to provision
and operate container hosts and Kubernetes clusters. You are familiar with tools
that enable you to monitor the infrastructure on top of which armies of containers
will run. Ideally, you are using Infrastructure as Code (IaC) to provision all your
Kubernetes clusters, network configurations, load balancers, data volumes, and
role-based access control. You know how to configure your Kubernetes clusters so
that they can grow and shrink on demand and that they are redundant and span
multiple availability zones. You are able to secure your Kubernetes clusters and
make them immune to all the cyber-attacks that happen all the time, every day.

But do not panic. Most, yet not all, of the skills you have just read about are covered
in this book. Those skills that we do not cover in the book you can easily acquire
once you have mastered the content of this book.

Salaries and career paths

According to data from salary comparison websites and job posting sites, the
average salary for a Docker container expert can range from $80,000 to $150,000
per year, depending on the location and level of experience. However, this is just a
rough estimate and may not accurately reflect the actual salary of a Docker container
expert in a specific location or industry.

There are several career paths thata Docker container expert might pursue, depending
on their skills, interests, and goals. Some potential career paths for Docker container
experts might include:

e Systems administrator: A systems administrator is responsible for the
installation, configuration, and maintenance of computer systems and
servers. They might work with Docker containers to deploy and manage
applications in a production environment.

e DevOps engineer: A DevOps engineer is responsible for designing and
implementing processes and tools to automate the development, testing,
and deployment of software. They might work with Docker containers to
automate the build, test, and deployment of applications in a continuous
integration and continuous delivery (CI/CD) pipeline.

e Software developer: A software developer is responsible for designing,
developing, and maintaining software applications. They might work with

Explaining Containers and their Benefits 15

Docker containers to package and deploy their applications in a consistent
and reproducible manner.

e Consultant: A consultant is an expert in a specific field who is hired by
organizations to provide advice and guidance on a particular problem or
challenge. A Docker container expert might work as a consultant to help
organizations adopt and implement Docker container technologies.

e Cloud computing: Cloud computing involves delivering computing
resources and services over the internet, allowing organizations to access
and use computing resources on demand. Docker containers can be used
in cloud environments to package and deploy applications in a consistent
and reproducible manner, making it easier to scale and manage applications
across different cloud environments. A Docker container expert might work
in a cloud computing role, such as a cloud solutions architect, cloud engineer,
or cloud operations engineer, and be responsible for designing, building,
and maintaining cloud infrastructure and applications.

e Data engineering: Data engineering involves designing, building, and
maintaining systems for collecting, storing, processing, and analyzing data.
Docker containers can be used in data engineering to deploy and manage data
processing and analytics pipelines in a reproducible and scalable manner.
A Docker container expert might work in a data engineering role, such as
a data engineer, data pipeline engineer, or data platform engineer, and be
responsible for designing and building data infrastructure and pipelines.

e Cybersecurity: Cybersecurity involves protecting computer systems and
networks from cyber threats and vulnerabilities. Docker containers can
be used in cybersecurity to deploy and manage secure applications and
environments in a consistent and reproducible manner. A Docker container
expert might work in a cybersecurity role, such as a security engineer,
security analyst, or security architect, and be responsible for designing and
implementing security solutions to protect systems and data.

These are just a few examples of potential career paths for Docker container experts.
There are many other job roles and industries that might be relevant for individuals
with expertise in Docker containers.

Conclusion

In this chapter, we looked at what containers are by giving a very familiar analogy.
We then discussed the most important use cases of containers. We showed ways
in which containers can help us to significantly reduce the friction in the software
development life cycle and, on top of that, how containers can make the software
supply chain more secure and resilient against cyber threats. We also showed how

16 Docker: Up and Running

the use of containers and related technologies brought a shift in the demand for
skills and resulted in new job roles.

In the upcoming chapter, we are going to setup our personal computers in the best
possible way so that we can work with containers efficiently and effectively. This
includes installing the Docker Desktop software that, to this day, remains one of the
developers’ favorite tools to work with containers. Stay tuned.

Questions

To assess your progress, please try to answer the following questions:
1. Containers and VMs are not the same. Provide three differences.

2. Name the two foundational capabilities of an operating system that enable
containers.

3. Name at least three typical use cases for Docker containers

4. Use a few short sentences to explain what the differences between containers
and Docker are?

5. Explain in a few short sentences what runC is.

6. Where can containers run? Name three to five different host systems.

Answers

Here are the answers to the preceding questions:

1. A few important differences between VMs and containers are:
a. VM contains a complete operating system; the container does not

b. A VM is more secure than a container, as it contains its own OS kernel
and is, in general, having better isolation against the outside world
than a container

c. A VMis considered to be long living; a container is supposed to be
ephemeral

d. VMs are heavyweight, whereas containers are (often) lightweight
e. VMs have a much longer startup time than containers

2. The two capabilities are namespaces and cgroups.

3. Hereis alist of typical use cases for Docker containers
a. Supercharging microservice architecture

b. Removing friction from the development process

Explaining Containers and their Benefits 17

Powering CI/CD pipelines

C.
d. Providing a standard deployment model for enterprises

e. Enabling standard tooling and infrastructure (see CNCF)
f.

Lowering the TOC and the time between new releases of legacy
applications

4. According to the official page: https://containerd.io, containerd is available
as a daemon for Linux and Windows. It manages the complete container
lifecycle of its host system, from image transfer and storage to container
execution and supervision to low-level storage to network attachments and
beyond. Contrary to that, Docker is built on top of runC and containerd
and provides additional features on top of it, such as a robust CLI, Docker
compose, and more, which make the use of containers much easier for
developers, DevOps, and operations engineers.

5. According to Docker, the originator of runC, it is a lightweight, universal
container runtime. It includes all of the plumbing code used by Docker to
interact with system features related to containers. It is designed with the
following principles in mind:

a. Designed for security
b. Usable at large scale and ready for production

¢. No unwanted dependencies: just the container runtime and nothing
else

6. Inthe meantime, containers can be hosted on a vast number of systems. Here
is an incomplete list:

a. Your laptop, be it a Windows machine, a Mac, or a Linux machine
Server or VM running Linux (various flavors)

Server or VM running Microsoft Windows Server

An IBM mainframe

Supercomputers

N O 2

A tiny single-board computer, such as Raspberry PI
g. Anedge computer (IoT)

Job interview sample questions

So, you finally got a chance for an onsite interview for a job as a software developer.
The job is offered by a cool new startup that develops a highly acclaimed new
mobile app for iOS and Android. During the interview, you are confronted with the
following questions:

18

Docker: Up and Running

Our company is not yet using Docker containers. The management is hesitant
and not sure whether to invest in this new technology. Please provide the
“elevator pitch” for containers to our CEO.

We are an IT shop specialized in providing a cloud-native SaaS solution in the
insurance business. The CTO is on edge to start adopting Docker containers
in the company. What important use cases would you present him that speak
for quick and consequent adoption of containers? Why are these use cases
important for our purpose?

In our company, there is a lot of confusion about what a VM is versus what
a container is. Some vocal engineers claim that they are basically the same.
And since we are already using VMs to run our software, we do not have
to bother about containers, they say. Please help us understand why this
is not true by providing three to four clear differences between VMs and
containers.

Our company does not yet use containers. If you had a say, where would you
start? What would be your first use case for containers? Explain why you
would start like this.

Our head of security claims that containers are as secure as VMs. Is she right?
Justify your answer.

Sample answers

Here are some sample answers to the preceding questions raised during the
interview:

1.

Containers have many advantages we should and can leverage. Similar to
what the introduction of physical containers did to the shipping industry,
the introduction of software containers can help our company to standardize
on infrastructure and processes in the Software Development Life Cycle
(SDLCQ). It can help reduce the friction during the development phase
by enabling our SW engineers to write, test and debug the software they
write in a production-like environment right on their local machines, as it
is possible to run middleware and infrastructure such as databases inside
containers right on their computers. Furthermore, containers isolate
applications and their dependencies inside containers and thus decouple
each application from all the others. No more version conflicts on the host
machine due to different requirements of different applications running on
the same machine, as the dependencies, such as frameworks or libraries,
are packaged with the applications inside their respective container. The
whole software release cycle will be streamlined and become more robust.
We can use containers as artefacts of our versioning strategy, and we power

Explaining Containers and their Benefits 19

our whole CI/CD pipelines with containers. Containerized applications are
also inherently more secure than applications running natively on the host
computer, as containers provide a good layer of isolation to the applications.
Many more advantages are available when using containers. But the ones we
named are some of the most compelling ones.

We would present the CTO with the following use cases:

a. Standardize deployment model:

i. When using Kubernetes to run containerized applications,
the deployment always looks the same. It is always based on
a Docker image, no matter what is running inside the image,
e.g., aJava or .NET application or a legacy Cobol application;
it’s “just a container”.

b. Streamline release cycle: ...

i. Using containers as versioning artefacts instead of files such
as JARs

ii. Application and dependencies form a unit of deployment

iii. Rollbacks are easy; just redeploy the previous version of a
Docker image

c. Improve security: image scanning, image signing, namespaces, and
cgroups.

d. Better scalability:
i. Faster to startup and tear-down

ii. Kubernetes solves many of the hard problems of a highly
distributed, mission-critical enterprise application, such as
scaling, routing, self-healing, high availability, and more

On first look, containers look a bit like VMs. But if we look closer, then there
are quite some differences between the two. A VM is like a perfect sandbox
and encloses a complete virtual server in it. A VM thus contains a complete
operating system such as Linux or Windows Server. Applications that run
on a VM are perfectly shielded from the outside. The only connection with
the outside world is over the network, which can be easily configured to be
saved. On the other hand, containers share the Kernel of the host system
with each other. Multiple containers can run on a single container host. A
VM can be a container host. It is not practicable, though, to run a VM inside
a container. Since containers share the Kernel of the container host, they are
much cleaner than a VM. Resource utilization is usually much better when a
server of a VM hosts many containers than if an application directly runs on
a VM. VMs are meant to be stable and run “forever”. Containers are meant to

20 Docker: Up and Running

be ephemeral and come and go at will. This leads to the fact that containers
usually start up in a matter of milliseconds, whereas VMs need a few minutes
to be up and running.

4. We would start using containers to reduce the friction in the development
process. Developers should be able to simulate a production-like environment
on their local developer machines. For example, they should be able to
run databases such as PostgreSQL or MongoDB locally. Other examples
include message queue applications such as RabbitMQ or ActiveMQ,
search providers such as ElasticSearch, and more. It is way easier to run
those supporting applications in containers than to install them natively
on the developers’ workstations. With this approach, the company can
gain familiarity with containers and their supporting ecosystem and then
gradually use containers for more advanced scenarios such as testing and
debugging. Using containers in production should be the last step. Only do
this once you are very familiar with this new technology, its pros but also its
cons.

5. No, the head of security is wrong. A VM is still much more secure than a
container. A VM is a completely isolated sandbox containing a full operating
system such as Linux or Windows Server. All containers that run on the same
container host, on the other hand, share the kernel of the host among each
other. It is, therefore, possible that a malicious application can use this fact to
exploit the other services running in the other containers on the same host.
Thus it is important to really understand the limits of container security
when running multiple containers in parallel on the same host.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

CHAPTER 2

Setting Up Your
Environment

Introduction

In the previous chapter, we have learned what Docker containers are and why they
have truly revolutionized the IT landscape. We also got compelling reasons why we
absolutely should use containers in our own projects.

Every skilled craftsperson, whether a man or a woman, uses a toolbox that has
been carefully chosen, with exactly the correct amount of tools for the work and no
extraneous clutter. Similar to software engineers, DevOps or operations engineers
require a small number of properly chosen tools in order to be productive. It is far
preferable to have a small number of highly specialized instruments than a seemingly
endless array of devices that you only have a cursory understanding of.

Many of you will have a Windows 10 or 11 machine to work with, and others will
be using a Mac. Maybe you are even using a laptop with a Linux OS installed.
To make sure that the instructions and commands presented in this book will be
applicable in all those scenarios, it is important that we standardize on a set of tools
that are common on all operating systems mentioned. In most cases, the instructions
presented in this book apply to Windows, MacOS, and Linux alike. On special
occasions where they differ, the book provides alternatives.

22 Docker: Up and Running

Structure

In this chapter, we will discuss the following topics:
e Selecting and preparing a package manager
e Installing and using Docker Desktop
e Selecting a code editor and useful plugins
e Configuring and using a great terminal
e Abrief introduction to play with Docker and Kubernetes
e Recap the learnings
e Questions

e Job interview sample questions

Objectives

By the end of this chapter, you will have installed all tools needed to efficiently
and effectively work with Docker containers. You will start by installing a package
manager onto your laptop, which makes subsequent installs much easier and
straightforward. You then will install the probably most important tool of all, Docker
Desktop. It is a versatile and powerful tool that you will use to manipulate and run
Docker containers locally. This will be followed by installing a powerful terminal
that you will be using all the time throughout this book to execute Docker-related
commands and more. Finally, you will receive a short introduction to Play with
Docker and Play with Kubernetes. Those online sandboxes provide you with an
easy and frictionless opportunity to experiment with Docker and Kubernetes if you
do not have a laptop at hand that has these tools locally installed.

Let us start by installing the package manager on your laptop.

Selecting and preparing a package
manager

Although any of the applications or tools we are going to touch on in this chapter
can be installed manually, we prefer to use a package manager for doing the same in
a more predictable and repeatable manner.

We will first install a package manager on a Windows 10 or 11 machine and then on
MacOS.

Setting Up Your Environment 23

Installing chocolatey on Windows 10 or 11

On Windows 10 and 11, our package manager or choice is Chocolatey. It is very
popular, and most popular applications, packages, and libraries can be installed
with it. More information about this package manager can be found here: https://
chocolatey.org/.

Technically, we could also use other package managers apart from chocolatey.
Specifically, the new WinGet package manager from Microsoft looks interesting
(https://docs.microsoft.com/en-us/windows/package-manager/winget/). Due to
the fact that itis still in its infancy and that chocolatey has proven to be very reliable,
we stick with our choice.

Before we start, let us have a quick note about command line tools on Windows.
On a Windows computer, there are different tools available. The most familiar of
those all is probably the command shell. It has been part of the OS since the very
beginning. It is a very basic shell.

Over the years and as requirements increased, Microsoft has developed PowerShell.
This tool is very powerful and popular among engineers working with and managing
Windows. It is also possible to install third-party tools such as Git that provide a
Bash shell.

We hence recommend that you either use PowerShell or any other Bash tool while
following the samples in this book. Now, let us continue.

24 Docker: Up and Running

To install Chocolatey on Windows 10 or later, go through the following steps:

1. Open PowerShell in Admin mode. To do so, for example, press the windows
key and type powershell in the search bar. In the window that pops up, click
Run as Administrator.

Al Apps Documents ~ Web More ¥

Best match

E Windows PowerShell g
App

Apps .
Windows PowerShell

2 Windows PowerShell ISE > App

£¥ Windows PowerShell (x86) >

£ Windows PowerShell ISE (x86) > = Open

Settings E¥ Run as Administrator

i PowerShell Developer Settings > B RunisE as Administrator

i Allow local PowerShell scripts to run 5 B Windows Powershell 15E
without signing -

&3 Replace Command Prompt with
Windows PowerShell in the Win + X

Search work and web

£ powershell - see work and web results >

yel powershel‘

Figure 2.1: Starting PowerShell in Admin mode

Note: It is essential to run PowerShell in elevated mode; otherwise, the
installation will fail.

2. Execute the following command inside the Powershell window:

Set-ExecutionPolicy Bypass -Scope Process -Force; [System.
Net.ServicePointManager]: :SecurityProtocol = [System.Net.
ServicePointManager]: :SecurityProtocol -bor 3072; iex ((New-
Object System.Net.WebClient).DownloadString('https://chocolatey.
org/install.psl'))

This command will download and run the install.ps1 script from the
Chocolatey website. If you do not want to type this horribly long and
convoluted command, you can also copy it from here: https://chocolatey.
org/install.

Setting Up Your Environment 25

3. The preceding command will take a few seconds to execute. If you do not
see any errors in the output, you are now ready to use chocolatey. To verify
this, execute choco -v

In the PowerShell console. The version of the package manager should be
output. At the time of this writing, the version is ©.10.15.

4. Exercise: Try to install a simple tool such as Notepad++ using Chocolatey.
Use the following link to find out what exact command to use: https://
community.chocolatey.org/packages

Hint: the command should look similar to this:
choco install <app-name>

Where <app-name> is the name of the package to install.

5. Exercise: Do the same for Git, which we will be needing later on in the book.

NOTE: You can skip the next section and proceed with the installation of Docker
Desktop.

Installing Homebrew on MacOS

On MacOS, the choice of a package manager is easy. The only real contender in this
space is Homebrew. Pretty much everybody uses it. More information about this
tool can be found here: https://brew.sh/index.

To install Homebrew, proceed as follows:

1. Start your default Terminal (type 3£-SPACE to display the Spotlight search
box and enter terminal in the search box and hit ENTER)

2. In the terminal, execute the following command (note that you will have to
provide your password for security reasons):

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/
Homebrew/install/HEAD/install.sh)"

3. Now to complete the installation, you have to add brew to your path. Do this
with the following commands:

echo ‘'eval "$(/opt/homebrew/bin/brew shellenv)"' >> ~/.zprofile
eval "$(/opt/homebrew/bin/brew shellenv)"

4. Verify that your installation has succeeded with this command:

brew -version

You should see an output similar to this:
Homebrew 3.1.7

26 Docker: Up and Running

Homebrew/homebrew-core (git revision b29800c865; last commit
2021-05-14)
Homebrew/homebrew-cask (git revision 21228459c5; last commit
2021-05-14)

5. Exercise: Try to install a simple tool such as tree using Homebrew. Use the
following link to find out what exact command to use: https://formulae.
brew.sh

Hint: the command should look similar to this:
brew install <app-name>
Where <app-name> is the name of the package to install.
6. Exercise: Do the same for Git, which we will be needing later on in the book.
You are now ready to use Homebrew to install additional software on your Mac.

Now that we have prepared our package manager on Windows 10 & 11 or MacOS,
we are ready to use it and install all the tools we need to work with Docker containers.

Installing and using Docker Desktop

Docker Desktop is the recommended tool for all engineers working with containers
on their local machines. This tool is absolutely free and, according to Stack Overflow
(https://www.docker.com/blog/stack-overflow-survey-reconfirms-developer-love-
for-docker/), one of the most popular and beloved tools. This tool allows you to run
Docker containers locally in a specialized VM. The tool is available for Windows,
MacOS and Linux. If you want more detailed information about the product, please
refer to this page: https://www.docker.com/get-started.

Installing Docker Desktop on Windows 10 or 11

Until recently, Docker Desktop could only be installed on Windows 10 Pro because
it required the use of Hyper-V, which was not part of the Windows 10 Home edition.
Luckily, this has changed with the introduction of the Windows Subsystem for
Linux (WSL2) on Windows 10 by Microsoft. Now, Docker Desktop also runs on the
Windows 10 Home edition.

TIP: WSL 2 is available on Windows 10 starting from version 1903.

To install Docker Desktop (or short Docker) on your Windows 10 or 11 machine,
proceed as follows:

1. Open a PowerShell window in admin mode

