Data
Structures with
Python

Get familiar with the common Data
Structures and Algorithms in Python

Dr. Harsh Bhasin

www.bpbonline.com

ii
Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork

119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55513-304

www.bpbonline.com

i1l

Dedicated to

My mother

iv

About the Author

Dr. Harsh Bhasin is a researcher and practitioner. Dr. Bhasin is currently associated
with the Center of Health Innovations, Manav Rachna Institutions. Dr. Bhasin
has completed his Ph. D. in Mild Cognitive Impairment from Jawaharlal Nehru
University, New Delhi. He worked as a Deep Learning consultant for various
firms and taught at various Universities including Jamia Hamdard and DTU.

He has authored 11 books including Programming in C#, Oxford University Press,
2014; Algorithms, Oxford University Press, 2015; Python for Beginners, New Age
International, 2018; Python Basics, Mercury, 2019; Machine Learning, BPB, 2020, to
name a few.

Dr. Bhasin has authored 40 papers published in renowned journals including
Alzheimer’s and Dementia, Soft Computing, BMC Medical Informatics & Decision
Making, Al & Society, etc. He is the reviewer of a few renowned journals and is the
editor of a few special issues. He is a recipient of a distinguished fellowship.

His areas of expertise include Deep learning, Algorithms, and Medical Imaging.
Outside work, he is deeply interested in Hindi Poetry: the progressive era, and
Hindustani Classical Music: percussion instruments.

About the Reviewer

Sumeet Lalla has done his masters of Data Science from Higher School Of
Economics Moscow and Bachelors of Engineering in Computer Engineering from
Thapar University. He also has 6 years of experience in Data Science and Software
Engineering. His career graph includes working as a Data Scientist in Cognizant
and as a Software Developer in Siemens Technology, along with working in
Services and Technology Analyst in Deloitte Consulting and Pvt Ltd.

vi

Acknowledgement

“Feeling gratitude and not expressing it is like wrapping a present and not
giving it.”
— William Arthur Ward

I am blessed to have met people who encouraged me to learn continuously. First of
all, Iwould like to thank Professor Moin Uddin, former Pro-Vice-Chancellor, Delhi
Technological University for his unconditional support. He has deposed his faith
in me when no one else did. Had it not been for his encouragement I would not
have been able to achieve whatever I did.

I would also like to thank Professor I. K. Bhat, Vice Chancellor, Manav Rachna
University, India; and Professor Sameer Singh, Rail Vision, United Kingdom; for
their continuous support and encouragement. I would also like to express my
sincere gratitude to the late Professor A. K. Sharma, former Dean, and Chairperson,
the Department of Computer Science, YMCA, Faridabad, for his constant
encouragement. I have been able to write this book, author papers, and work on
projects only because of the encouragement provided by him. I would also like to
thank Professor Naresh Chauhan, former Head and Chairperson, Department of
Computer Science, YMCA University of Science and Technology, and Dr. S. K. Pal,
Scientist, Department of Defence and Research Organization, Govt. of India for
their constant support.

I am thankful to Mr. Nishant Kumar, NCU, India, for his contribution to editing,
formatting, and developing some programs for this book. I would also like to thank
my students and colleagues, for their critical reviews. I am also very thankful to
the editorial team of BPB Publications for providing valuable assistance.

I would like to express my sincere gratitude to my Mother, Sister, and the rest of
the family including my pets: Zoe & Xena, and friends for their unconditional
support to me.

Iwould be glad to receive your comments or suggestions which can be incorporated
into future editions of the book.

vii

Preface

This book introduces the reader to Data Structures and Algorithms, the foundation
stone of programming. The concepts discussed in this book will help the reader to
understand various data structures, analyze the time and space complexity, and
use these data structures for solving graded problems.

The first chapter introduces the reader to the fascinating world of Algorithms and
Data Structures. The idea of complexity has been introduced in the chapter. It
contains ample examples of finding the complexity of a given algorithm.

The next chapter takes the reader through various approaches to developing
algorithms. The chapter introduces the Greedy approach, divide and conquer,
dynamic programming, and backtracking. An introduction to branch and bound
has also been included in the chapter.

Recursion has been introduced in the third chapter of this book. The chapter
contains the mechanism, examples, and the process of finding the complexity of
a recursive algorithm. The problems related to arrays have been discussed in the
fourth chapter of this book. It presents insertion, deletion, and searching in arrays
along with the complexities.

Chapter 5 discusses Linked Lists. The algorithms, complexity, and problems of
linked lists have been covered in this chapter. This chapter forms the basis of
the following chapters. The next two chapters introduce stacks and queues. The
applications of these data structures have also been included in the chapters. These
chapters contain assorted problems related to stacks and queues.

Chapters 8 and 9 deal with trees and heaps. The insertion and deletion in binary
trees and other algorithms have been included in these chapters. Chapter ten
introduces priority queues. The next chapter discusses graphs. It contains traversal
algorithms, spanning tree algorithms, and shortest path algorithms.

Chapter 11 contains eleven sorting techniques and discusses the related problems.
selection has been dealt with in the next chapter. A very efficient searching
technique called hashing has been explained in detail in the fourteen chapters.
The last chapter deals with the String algorithms.

The book also contains four appendices containing Dijkstra's algorithm, all pairs'
shortest path, and tree traversals using stacks and problems.

viii

Coloured Images

Please follow the link to download the
Coloured Images of the book:

https://rebrand.ly/6rz6cpm

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :

business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free technical

articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

ix

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Table of Contents

1. Introduction to Data SHrUCUIES.......cerereeereririeernternstetetesseetesssesessssssssesesseseseses 1
SHUCHUTC ..ottt 2
ODJECHIVES ..ttt 2
INtrOAUCHON ot 2
Data tyPes c.cucuveiieie s 3
Types of data Structures..........c.ouevvieiiiie e 4
Game Of ClONESovuvucvriictcc e 6
The game of clones revisited......c.ccevieiiniiciiiniicieiicciccecenenes 10
CONCIUSION ottt 12
Multiple choice qUESHIONS.........vviviuieinriciir s 12
Theory-based qUESHONS.......cccueviuerceerireriecieieceeeeneeenese e nsese s aseaenae 14
Application-based qUESHONS........ccceviiviiiviiii 15

2. Design Methodologies 17
SHUCHUT@ ..ottt 18
ODJECHIVES ...ttt 18
Greedy apProach ... 19
Divide and CONQUEToeieiiiieieiicteeet s 20
Backtracking and dynamic programmingcceeceeueeeereeneieinineiennsnenens 21
Longest common SUD-SEQUENCE........ccuvuiiriimiriiiiniciiccecec s 24
CONCIUSION ..ottt 30
Multiple choice qUESHIONS.........cviviuieinricirr s 30
Programming /applicationcccueveurueunirniseinniciccs s 32
Further references ..o e 34

3. Recursion 35
SHUCHUT@ ..ottt 36
ODJECHIVES ..evviiietetettit s 36
EXPOnentiation ...t 36

TOWET Of HANOI1cevveeieeieeeeeeeeeeeee et et eearee e e e ssaaeesesansesessnneessneeeesnnns 38

xi

4. Arrays

5. LINKEd LiSt..uueerrreerrreerrreerseessreessrecssseesssaesseessssesssnesssaese

Rabbit Problem..........cuiieiiiii s

Generating binary NUMDETSccoeeiiieieiice e

CONCIUSION ottt
Multiple choice qUESHIONS.........cviviuieinricirr s
Programiming ...

FUhOT TOLETEICES .vvveveeveereeeereereereteer ettt et er et s e e e eressensesesnensernesens

SHUCHUT@ ..ottt
ODJECHIVES ...ttt
INtrOAUCHON vt s

MEIOTY AP oo
Address in COlUMN-MAJOTucuevriiurieieiiieieieete i
Inserting and deleting.........cccovviviiiiiiiiiiiiiiii e
OPperations ON AITAYSceuerruereireemrieiireieieise et aeaes

Linear SEArch.............ovvvivvviiiiiiiiiiiiciciciiiiiiici s
ProbIemsS......cucuiviviieiiiiiiic e
CONCIUSION ..ttt
Multiple choice QUESHONS.c.cuviiuiuiriiiiiiicciciic s

Programmingccccceeieieieieiiiie e

SEIUCEUTE ...ttt ettt et ettt b bt sae st et es e e saebentene
ODJECHIVES ...ttt
One-way linked Listcovovieieiiii e
TrAVEISING «oovivititiiitetetet s
Insertion and deletioncoueceeuerererieenieenineereerte ettt seenes
Two-way linked LSt ...
TrAVEISING woovivititiiiteeteete s
Insertion and deletionc..coeeueieerieieiiriereteeset ettt

CYCIC LISt uuuniiiiiicicice e

41
44
47
48
49
50
51
53

55
55
56
56

58
59
67
68
70
75
76
77

xii

StaCks ANd QUEUES.....ccuvieeeeeeeeeteeete ettt et teeae e e eseeeseeereeese e seesaesseessesssesssenns 96
Reversing a linked List.........ccooeieieioiciiii e 99
Concatenate Lists ..ot 100
CRECK CYCLE et 101
CONCIUSION ..ttt 101
Multiple choice qUESHIONS........ccviviuieirriii e 102
TREOTY et sttt 103
Problems.......ouiiiiiieiii 104
6. Stacks 107
SHUCHUT@ ..ttt 108
ODJECHIVES ...ttt 108
INErOAUCHON ..ot 108
Implementing two stacks using a single list........cceeeiveerevnieeieieeecrcine 114
TYPes aNd USES ...cvveveveictiiicictetctct s 116
Reversing a String ...t 117
EXPIeSSionS ..ottt 117
Evaluation Of POSHfiXccccevvivieiiiiiiiiiiiiiiieicicicec st 118
INfIX £0 POSHIX oottt 120
INFIX O PTfiXiiiiiiiiiiiiiiiiciiiccticc 126
Problems.... ..ottt 129
CONCIUSION ..ttt 132
Multiple Choice QUESHONS.........curviuirrirriciiiiicieiis e 133
Problems.......ouiiiiiiciiei 136
7. Queues 139
SHUCHUT@ ottt 139
ODJECHIVES ..evviieittet e 140
INErOAUCHON .ot 140
Algorithm and implementation............ccovueeuemvicueiniiceinincceniceeiceenes 142
CIrcular QUEUE.cveveveetetett e 146
Doubly-ended queue: DEQUEUEooeevereiiieieiiiec e 149

Generating binary numbers using a qUeUEcccceeverinirieiecinininecienenens 152

xiii

Stack USING tWO QUEUEScuvvieieciiiii s 155
Stack from a single qUEUE........covcueveiiieieiic s 156
SCheAUIING ..o s 159
CONCIUSION ..ottt 160
Multiple Choice QUESHONS........curuiuirrirriiciiriicicss e 160
Problems.... ..o 163
8. Trees-I 165
INErOAUCHON .ot 165
SHUCEULE ... 166
ODJECHIVES ..etvteitttet e 166
Definition and terminology.......cccccueeeviniiiniiiiiiiiciiccccs 166
Representation of a Binary Tree.........cccoivviviiiciininiiecciccicccennes 169
THAVETSAL ..ot 171
Post-0rder trADErsal.............ccocuiiiiiiiiiciciiiiiiiiiiii i 174
Pre-order traversal..............coovuieiiiviiciiiiiiiiiiiii 176

Binary search tree........ococociiiuciiiiciiiniiciciicc s 178
Insertion in @ BST ... 180

DIEHION ..ottt s 185
Lefttmost 1Occovoviiiiiiiiiiiiiiiciiiiictc 188
RIGHEMOSE NOME. ..o 188
CONCIUSION ...ttt esas 192
Multiple choice qUESHIONS........ccvivruieirciii e 192
Numerical / Problems ... eesenes 194
9. Trees-II 197
SHUCEULE ... 198
ODJECHIVES ..evviieittet e 198
AVLATEES ..ttt 198
THSEIEON. .o 199
DIEHION ..ottt s 200
Insertion in an AVL ec.ccvviiiiiiiiiiiiiiiiiccce 200

Deletion from an AVL TYe............c.cccoviviviviiiiiiiiiicicesiccsiis s 209

xiv

B TEES.c.e ittt 219
CONCIUSION ..ttt 225
Multiple choice QUESHONS......c.cueicuiriiiciiiiciiicicic e 225
TREOTY ettt et e 228
INUMETICALS. .. veieieieititciciictcicttc st 228
10. Priority QUEUES.....cecereerinrerneresisesinsessssesisessssneseseas 231
SHUCHUT ...t 231
ODJECHIVES ...ttt 232
Introduction to Priority qUEUESceueveiieeieviiieie e 232
SHUCKUTE Of HOAP ... 232
OPCTALIONS ..ottt 234
Inserting an element in a heap.........ccccevviccieiniiininicciciccccccceees 234
DeletioN ..cvviiiiii s 240
HeEAP SOTt . 243
Problems.......c.oouiiiiiiicic 246
CONCIUSION oottt s 247
Multiple choice qUESHIONS........ccviuiuieircicir e 248
Programming ... 249
Further references ..o e 250
11. Graphs 251
INtrOAUCHON .ottt 251
SHUCHUT@ ottt 252
ODJECHIVES ...ttt 252
Representation ... 252
TrAVEISALS . 256
Depth First Search ..., 256
Breadth First SEArchccocvvvvivcvioiiieisiiiicicisicicse s 262
TOPOLOGICAL SOTT ... 266
SPANIUNEG T ...ttt s 270
Kruskal’s algorithm ..o e 271

CONCIUSION 1ttt ettt ettt e s e sttt e saaeesaseesaaeesaseesaseesaseesaseesssessssessnsessnsens 274

X0

Multiple choice qUESHIONS........ccvivruieirciii e 274
Numerical /application based..........cccceuruiunininirnininineiic e 277
Programiming ... 280
12. Sorting 281
SHUCEULE ..t 282
ODJECHIVES ..evvititet e 282
BUDDIE SOIt....eieieiiiiciccc e 282
COMD SOTE..vveiiiiictc e 286
SElECHON SOTL....ecvvitritttciiettci e 289
INSEItioN SOTt....cviiiiiiiiiiiiccc s 291
RaAAIX SOT ..ttt 292
COUNENG SOTt....vivivieiiiiiiiicrccicc s 295
Merge and MEerge SOIt........couueveviiueieiinietie s 296
Partition and quick SOItouevieieieiicii 301
CONCIUSION ..ottt 304
TUSEFAtIONS . c.vvvceiiiiiiiii s 305
Multiple choice qUESHIONS........ccviuiuieircicir e 308
TREOTY .ot 311
13. Median and Order Statistics 313
INErOAUCHON .ot 313
SHUCEULE ... 313
ODJECHIVES ..etvieeiettett s 314
Introduction to median and order statisticscoovevieiriiiiininiicccnns 314
Median of Medians........ccoeiiviriniiiiiiiic e 315
Median using heaps ... 318
Median using inSertion SOTtccceueeeeueievniuiieieiiee s 323
Median using Partitionccceeeeiininieniciiicccc e 323
CONCIUSION ..ottt 325
Solved Problems ...ttt 325
Multiple choice qUESHIONS........ccviviuieirriii e 328

Applications/implementation..........ccweueeeueereueuncuemsemeucsenesenseensesensesensenns 330

xvi

BibHOGIaphy «...cuccvieiciiiiiicc s 330
14. Hashing 333
SHUCEUT® ..ottt 333
ODJECHIVES ...ttt 334
Hash tables ... 334
Storing iNfOrmMationcceevevevicieieicee s 335
Sorted sequential ArTAYcccovvviiiiiiviiicicicicisicisicicieicieeic 335
Linked list 1epreSentationcccovevviiieiiiiiiiisssiesisiiisiiiiisicsieinns 336
AVLETCS ovviviviieieiiiiictctetetct e 336
HAaShING «..ovvveci s 337
HASH fUNCHON ..ot 338
ColliSTON 1ESOIULION ...t 338
Selecting hash fUnCHONccovvveviieiiiiiiiiieiiiieice s 338
COLLISIONS. cu.vvvviiiit ittt 339
Collision reSOIUHON «.evevevecetiictct s 340
Linear probifig............ccvvviiviiiviniiiiiiiiiiiiiiicciccs e 340
QUAdYALIC PIODINGoovvvvevveiieieiiiiieiciieee s 342
Separate CHAINING.........oocvvvvveieriiiiieieiieetet e 344
Solved Problems ... 345
CONCIUSION oottt s 348
Multiple choice qUESHIONS........ccviviuieirciii e 349
TREOTY .ot 351
Problems.......ouiiiiiiciiei 351
Programiming ... 351
15. String Matching 353
SHUCHUT@ ottt 353
ODJECHIVES ...ttt 354
Introduction to string-matchingccccceveeueiiiicccininicininiicccceccnens 354
Brute force methodccuviuiiiiniiiiiciiiicicc e 354
Rabin Karp ...coveieieieiicicteii s 355

Knuth-Morris—Pratt algorithm........c.ccceeeueieinincirincinieirieieeceeeecceeeeneenenn. 359

KMP MEhOd ..cooveeiiiciciiiiiciiicciteeieeitecie i ieenenstesese st ssesesesesesaesesesens 363
CONCIUSION ...ttt esas 367
Multiple choice QUESHONS......c.cueicuiriiiciiiiciiicicic e 367
Theory /appliCationsc.ccecveeeiiueirieciiieiieeieeeseeei e esesssaesssse s saensaes 369
Find errors/special Cases ... s 369
REfEIENCES ...ttt 371
Appendix 1: All Pairs Shortest Pathcccevrevnicnunncnnnnes 373
INErOAUCHON .ot 373
All Pairs Shortest Pathc.cceecceeieiicccinicceicenccetseneeesenseeenenas 373
Appendix 2: Tree Traversals 377
INErOAUCHON .ot 377
IN-Order Traversal ...t 377
Pre-order traversal.........ccviiiiiiiiniii e 379
Post-order traversalcccoviiiiininiiiii e 381
Appendix 3: Dijkstra’s Shortest Path Algorithm 385
INErOAUCHON .ot 385
Dijkstra’s shortest path algorithm..........cccoeueeiinieicinecce, 385
Appendix 4: Supplementary Questions 391
ATTays: Level 0 .o 391
ATrays: Level T .. 392
SHACKS .ttt 392
Linked LiSt ... 392
TEEES ottt 393
GIAPRS ettt e e e 395
Application based.........coveueueiiiieiiii s 396

Index 399-402

CHAPTER 1

Introduction to
Data
Structures

ichard Buckland from the University of New South Wales often uses the acronym

PAPP while teaching Data Structures and Algorithms. Here, the first P stands
for the problem, the A stands for the algorithm, the second P for the program, and
the third P for the process. An algorithm is the sequence of steps to accomplish
the task at hand or solve the problem. The algorithm is then implemented in some
programming language, thus, giving rise to a program. When you execute this
program, it becomes a process.

You learn languages, say Python, to implement an algorithm;this takes us from
the algorithm to the program. You execute this program, thus, creating a process.
To understand the transition from a program to a process, you learn the basics of
Compiler Design and Operating Systems. In this chapter, you will learn the transition
from Algorithm to Program and to some extent, the problem to the algorithm. That
is, you will be presented with algorithms related to some data structures, which you
will implement. Furthermore, at times, you will be presented with some problems
that you need to solve using the implemented data structures. This chapter defines
the term data structure and presents a brief overview of the things to come.

The reader is expected to know Python;for that matter, he/she must be versed in
at least one programming language. The following discussion will extensively
use loops, nested loops, lists, tuples, dictionaries, arrays (both 1-dimensional and
2-dimensional), and the difference between reference types and value types.

2 Data Structures with Python

Structure

In this chapter, we will cover the following topics:
e Define data structures
e Define data type
e C(lassify data structures

e Learn a way to sort numbers

Objectives

This chapter aims to introduce the fascinating subject of data structures to the
readers. The chapter will deal with the basic data types, types of data structures, and
a problem related to sorting.

After reading this chapter, the reader will be able to classify data structures and
understand why this study isimportant. The reader will also learn when to use which
data structure and what operations can be performed on them. This discussion will
act as a foundation stone of the building called data structures.

Introduction

The single value stored in a variable is called a datum. The set of values of a variable
is called data. Note that data may contain many values, each of which is referred to
as a data item. Each data item can further be divided into sub-items. For example,
a variable called name, which stores the name of a student, may have the value
“Brandon Walsh”. This data item can be divided into two sub-items, “Brandon” and
“Walsh”, which are the first name and the last name, respectively, though some data
items like PAN CARD NUMBER cannot be divided into sub-items.

Some of you might have studied Object Oriented Programming and have some
basic idea of a “Class”, which is a real or a conceptual entity having importance to
the problem at hand. An entity has attributes, each of which can be assigned some
values and these values may belong to a particular data type. For example, in the
following illustration, an entity called Movie has attributes name, year, genre, and
so on. The data type of Name is a string, that of Year is an integer, and that of Genre,
Director, and Music are strings. The values assigned to these variables are “Sairat”,
2016, “Don’t talk about it”, “Nagraj Manjule”, and “Ajay-Atul” respectively.

Movie

Name : Sairat
Year : 2016

Introduction to Data Structures 3

Genre : Don’t talk about it
Director : Nagraj Manjule
Music : Ajay-Atul

The set of similar entities constitutes an entity set, which will help us to solve the
preceding problem. This takes us toward meaningful data, which can be processed.
Here comes information that can be considered as processed organized data. The
organization is important, and this subject will teach you how to organize data.

Let us consider a file containing records of movies. Each record contains five fields:
Name, Year, Genre, Director, and Music. So, we have a file containing records, and
each record contains fields. This is an example of fixed-length records. There are files
containing variable-length records as well. In such files, the maximum and minimum
length is generally mentioned. The data needs to be organized to facilitate efficient
and effective handling of this data. This subject teaches you data structures, which
will help you to organize data efficiently and effectively.

Data structures: Data structures include the organization of records into complex
structures, the implementation of such structures and the analysis of the amount of
memory and time taken by such structures.

Having seen the definition of data structures, let us now move to the definition of
data types.

Data types

“The data types constraints values that a variable can take and define operations that can
be performed on it.”” The basic data types such as int, char, and float are also called
primitive data types. In older versions of C, for example, an integer is used to take
two bytes of memory (16 bits). Out of these, one bit was reserved for the sign of
the integer, and the remaining 15 bits were for storing the values. Note that the
maximum value can therefore be 2'°- 1 = 32767 and the minimum value could be -2'°
=-32768. Likewise, in the versions of C, which allot 4 bytes to integers, the maximum
value can be 2%'- 1 and the minimum can be -2°' .

The int data type, therefore, constrains a) the types of values that can be stored in an
integer type variable b) the range of values that can be stored in such a variable, and
c) the organization of memory (as in one bit will store the sign information and the
rest binary equivalent of a given number).

The primitive data types are provided by the programming language, such as
integer, character, float, Boolean and so on. The amount of memory allocated to each
depends on the language and some other factors. For example, an int in C occupies
two bytes in Turbo (DOS) and four in Visual Studio.

4 Data Structures with Python

Most programming languages also allow user-defined data types as well. In Object
Oriented Languages, classes provide a way to create user-defined data types. In C,
structures can be used to create these.

Let us now have a brief overview of the types of Data Structures. The following
section will give you a glimpse of things to come.

Types of data structures

This subject primarily focuses on the organization of data. This organization can
be modeled in different ways, each of which is referred to as a data structure. For
example, a set of ordered numbers can be placed in a linear array or in a tree-like
structure. The first method is easy but may require more time for some operations
like insertion and deletion, whereas the second method though slightly complex,
will help in easy insertion and deletion.

Any model that you choose must be representative of the relationship between the
data members, and the structure should be simple, effective, and efficient. Some of
the data structures that will be explored in the following chapters are as follows:

e Arrays: An array is one of the simplest data structures. It is homogeneous,
and the elements are stored at consecutive memory locations. The elements
of the array will be represented by the name of the array followed by square
brackets ([]) containing the index of the element. Note that the first element
is generally placed at index zero, the second at index one, and so on.

¢ Two-dimensional arrays: Two-dimensional arrays are table-like structures
containing rows and columns. The elements in these matrix-like structures
can be accessed by the name of the array, followed by the two indices
depicting the row index and the column index. Generally, in memory, the
two-dimensional arrays are stored in the row-major or column-major format,
as discussed in Chapter 4, Arrays.

e Linked list: The linked listis a data structure in which the units called nodes
are linked together. Each of these nodes contains at least two parts normally:
(a) the information and (b) the address of the next node. The address of the
last node is null/none. We may also have more than one container for the
address in each node, like in the case of a doubly linked list. In a doubly
linked list, each node contains the address of the previous node, information
and that of the next node.

Introduction to Data Structures 5

Stacks: Stacks is a linear data structure that follows the principle of Last in
first out (LIFO) or First in last out (FILO). So, if you insert 51, 78, 90, and
49 in a stack, the order in which these elements would be removed is 49, 90,
78, and 51 (which is LIFO). Stacks is extremely useful while implementing
recursion and in evaluating various types of expressions such as postfix,
prefix, and so on.

Queue: Queue is a linear data structure that follows the principle of First in
first out (FIFO). So, if you insert 51, 78, 90, and 49 in a queue, the order in
which these elements would be removed is 51, 78, 90 and 49 (which is First In
First Out). Queues are used in the implementation of scheduling algorithms
such as FIFO and so on.

Graph: Graph is a set containing {V, E}, where V is a finite non-empty set of
vertices, and E is a finite non-empty set of edges. They are used in almost all
facets of Computer Science, such as circuits and systems, networking, and
SO on.

Trees: Trees generally contain nodes depicting hierarchical relationships.
Technically, it is a graph that does not contain a cycle, isolated vertex, or
isolated edge(s). Such data structure greatly helps us in searching and even
sorting.

The operations that can be performed on each of the data structures are as follows:

Traversal: A traversal defines a way to visit each element of a given data
structure. A graph, for example, can be traversed using Depth First Search,
Breadth First Search, Level First Search, and so on. A binary tree can be
traversed using In-order, Post-order, or Pre-order traversal, and so on.

Insertion: The process of inserting a node in a given data structure is
important both in terms of time complexity and memory management. For
example, inserting an element at the end of an array takes O(n) time, whereas
inserting an element in a stack takes O(1) time.

Deletion: Like in the case of insertion, the deletion of an element is important
both in terms of time and space complexity. For example, deleting an element
from the end of an array takes O(1) time, whereas deleting an element from
the beginning of an array takes O(n) time.

Searching: This is one of the most important operations in data structures.
In fact, many data structures are designed so that an item can be efficiently
searched from them.

Let us now have a look at one of the most important problems in data structures:
Sorting.

6 Data Structures with Python

Game of clones

Consider the following situation. You have five people (all the same: clones?) with
placards having a number written on them. All the cards have different numbers.
The five people are assigned numbers indicating their positions, which are from 1 to
5 (figure 1.1). They start playing a game as per the following rules.

2 42 & &

23 47 20

r 3
o
~F

Person 1 Person 2 Person 3 Person 4 Person 5

Figure 1.1: Five persons holding different placards

Starting from i=1 (till i=4), person i and (i+1) exchange their cards if the number
oni’s card is greater than (i+1)’s card. That is, person 1 will exchange the card with
person 2 if person 1’s card has a number greater than person 2’s card; then person
2 will exchange the card with person 3 if person 2’s card has a number greater than
person 3’s card, person 3 will exchange the card with person 4 if person 3’s card has
a number greater than person 4’s card, and finally, person 4 will exchange the card
with person 5 if person 4’s card has a number greater than person 5’s card. This way,
person 5 will have the card having the greatest number after this step (figure 1.2):

Introduction to Data Structures

2 2 2 2 2

Parson 5

Person 1 Person 2 Person 3 Person 4 Person 5

Person 1 Person 2 Parson 3 Parson 4 Person 5

4 2 2 2 2
23 20 ‘ 47 15 63
Parson 3 Person 4 Parson 5

\/

Figure 1.2: At the end of Step 1, person 5 will have the card having the largest number

Person 1 Person 2

8 Data Structures with Python

In the next step, the preceding process is repeated, except for the exchange between

persons 4 and 5, as person 5 already has the greatest number. After this, Step 4 will
have the second largest number (figure 1.3):

5 m— $ 4 \
1 23 < 20 < a7 ‘ 15 ‘ 63
Person1 Person 2 Person3 Person 4 Person5

o

< 20 < 23 ‘ a7 ‘ 15 ‘ 63
Person 1 Person 2 Person 3 Person 4 Person5
2 2 2 2 &
‘ 20 23 ‘ 15 ‘ 47 ‘ 63
Person1 Person 2 Person 3 Persond Person 5

\/

Figure 1.3: At the end of Step 2, person 4 will have the card having the second largest number

%

H--

Introduction to Data Structures 9

In the next step, the preceding process is repeated till all the numbers are sorted
(figure 1.4):

i % i % £ i A i
< 2 | 1 23 ‘ 15 1 a7 ‘ 63
Person 1 Person 2 Person 3 Person 4 Person 5

\/

&
&

P
r
&
&
=

Figure 1.4: At the end of Step 3, person 3 will have the card having the third largest number

Note that in the last step, only a single comparison is required (figure 1.5):

4 2 2 £ &

15 20 23 47 63

Person 1 Person 2 Person 3 Person 4 Person 5

7

Figure 1.5: At the end of Step 4, person 2 will have the card having the fourth largest number

10 Data Structures with Python

Note that after each step, the largest element of the remaining array is placed at the
(i+1)" last position. Here, i varies from 0 to (n-1), n being the number of terms. The
complete process results in the sorted array. Note that in the preceding process, the
total number of comparisons is 4 + 3 + 2 + 1 = 10. Had there been n numbers, the
total of comparisons would have been (n-1) + (n-2)+ ... + 1 =(n x (n-1))/2. That s of
order n?. The process scales very poorly. When the number of elements doubles, the
complexity changes by almost four times, provided n is a large number, and all the
overheads take a negligible amount of time.

The game of clones revisited

The preceding game was being watched by Phineas Fletcher. He approached the
group of people playing the game and suggested a simple change. He suggested
selecting the highest number in each step and replacing it with the i element, i
starting from 0. The process is shown in the following figure.

In the figure that follows, the largest number (63) is selected in the first step and
swapped with the element at the 0" index. In the next step, the second largest number
is selected and swapped with the element at the 1**index. Likewise, in the successive
steps, the largest numbers from the remaining array are chosen and swapped with
the element at the i index (figure 1.6). Note that if selecting the largest element from
the remaining array takes time, O(log n) the whole process should take time of order
O(n log n), which is much better than the previous method of sorting numbers.

Introduction to Data Structures

11

63

Person 1

63 47

Person 1 Person 2

Figure 1.6: Another way to sort numbers

12 Data Structures with Python

The following graph (figure 1.7) shows the variation of n? and (n log n) with n and
makes a strong case for the second method of sorting numbers:

— nlogin)
n"2
T T T T T T T T T

1 2 3 4 5 & T 8 9

Figure 1.7: Variation of nlogn and n®> with n

Conclusion

This chapter introduced the reader, the fascinating world of data structures. The
chapter defined the term data structure, explained its types, stated the difference
between data structures and data types, and presented a problem to explain the
importance of time complexity. The reader should get hold of the idea of data
structure, its types, and their applications after reading this chapter. This chapter is
your first step towards becoming an accomplished programmer.

The next chapter takes the discussion further and introduces algorithms and
complexity. The features of an algorithm, the types of algorithms, and asymptotic
notations for complexity are discussed in the upcoming chapter.

Multiple choice questions

1. Which of the following follows the principle of Last In First Out (LIFO)?
a) Stack
b) Queue
¢) Linked List

d) None of above

Introduction to Data Structures 13

Which of the following follows the principle of First In First Out (FIFO)?
a) Stack

b) Queue

c¢) Linked List

d) None of the above

Which of the following is a linear data structure?
a) Stacks

b) Queue

c) Array

d) All the above

Which of the following is a non-linear data structure?

a) Tree

b) Graph

c) Plex

d) All the above

Which of the following data structure is used to evaluate a postfix
expression?

a) Queue

b) Stacks

c) Array

d) None of the above

Which of the following data structure is used to evaluate a prefix
expression?

a) Stacks

b) Queue

c) Array

d) None of the above

14 Data Structures with Python

7. Which of the following data structure is used to find the shortest path?
a) Trees
b) Graph
c) Plex
d) None of the above
8. Which of the following data structure is used for an efficiently searching
an element?
a) Binary Search Trees
b) Queue
c) Stack
d) None of the above

9. Anintegerin Turbo C takes two bytes;what is the maximum value that can
be stored in it?

a. 32767
b. 32768
c. 65536
d. 65535

10. Inthe preceding question, if itis an unsigned integer, what is the maximum
value that can be stored in it?

a. 32767
b. 32768
c. 65536
d. 65535

Theory-based questions
1. Whatis a data structure?

2. Define data type and differentiate between primary and secondary data
types?
3. What are linear and non-linear data structures?

4. Define Stack and give any two applications of Stacks?

5. Define Queue and give any two applications of Queues?

Introduction to Data Structures 15

Define Trees and give any two applications of Trees?

How will you sort a list of numbers without spending time?

6
7. Define Graph and give any two applications of Graphs?
8
9

Explain PAPP.

10. Write a short note on why you should study data structures.

Application-based questions

1. Harsh keeps track of music videos by saving the following data on his PC:

Name

Singers

Music Director
Album

Year

Duration
Lyricist

a. What steps would you take if you needed to store the preceding
information of all the tracks in a file?

b. State the data types of all the attributes?

c. Give reasons for choosing a particular data type for an attribute?
For example, explain why you choose a list/an array for the
variable singers.

d. The records need to be stored in a file and accessed by a Python
program. Can you suggest a better way of storing the data?

2. Listening to songs continuously motivated Harsh to keep track of albums

as well.
a. What attributes must he store according to you?
b. State the data type of each of the attribute?
c. Can you suggest which attribute will always be unique for a particular
record. What is such attribute called?
d. Can you link the previous question and this question with such unique

attribute?

16 Data Structures with Python

3. In the preceding two questions, segregate the attributes as variable length
attributes and fixed length ones?

4. Give a brief description of how will you search a record in this file?

5. Harsh decides to sort the records alphabetically. Based on the techniques
introduced in the chapter, can you suggest a method to him?

6. Consider the following expression: (@ +b) - ¢
Create a tree for the same.

7. In your organization or University, there must be some hierarchy. For
example, the Dean reports to the Vice Chancellor, the HOD (Head of
Department) reports to the Dean and the faculty of a department reports to

the HOD. Furthermore, each faculty may have a Teaching Assistance (TA).
Create a tree representing this hierarchy.

8. You have given a list of numbers. Find out the subset of the list that sums to
a particular number. Suggest a method for the same?

For example, If the given list is [1, 2, 3, 4, 5, 6] and the sum is 6, then the
subsets that sum to 6 are: {1, 5}, {2, 4}, {6}

Join our book's Discord space

Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

CHAPTER 2

Design
Methodologies

he previous chapter discussed the definition, types, and importance of data

structures. Some approaches for sorting a list of numbers were also discussed.
This chapter takes the discussion forward and introduces design techniques. The
techniques, their applicability, and when to use them have been discussed in this
chapter. Also, the chapter gives an ephemeral introduction to asymptotic complexity,
which has been discussed in detail in the Appendix of this book.

Let us begin with an example. Suppose you need to find a number in a given list.
What will you do? If the list is not sorted, you may match the element at each index
with the given number. If they match, you will print the index. In the other case,
you will move ahead. If you are not able to find the number, then you will print the
message “Not Found”. This is Linear Search and takes time proportional to n (the
number of elements in the list). If the list is sorted, we may apply Binary Search,
which divides the list into two halves and reduce the size of the problem in half at
each step. The algorithm takes time proportional to O(log n). Both these techniques
are discussed in detail in the following chapters.

Now, hold and think about a situation where the sorted list is shifted by k positions
(a finite number). How will you find a given element in this list? You may apply
Linear Search, a variant of Binary Search, or a heap (Chapters 3, Arrays and 9, Heaps).
The chapters that follow will address all these questions. However, any solution that
you think should be the following:

18 Data Structures with Python

a) Correct

b) Efficient
The first and foremost thing in any solution that you propose is that it must be correct
and must cater to all possible test cases. Efficiency comes next. The program should
optimally use resources: both memory and time. Some of the approaches that you
follow to solve a problem can be the following;:
Divide and conquer
Greedy approach

Dynamic programming,

Backtracking and branch and bound

Divide and Conquer is applied when a problem can be divided into similar sub-
problems, and each sub-problem can be solved using that approach. Also, if required,
there should be a way to club together the solutions to the sub-problems to return
the solution to the original problem. Exploring each possibility and backtracking
from the leaves to get the solution can be another approach, though expensive. If the
sub-solutions can be memorized using a table, it leads to dynamic programming.
The following sections will touch upon each of these approaches and will help you
develop an understanding of these approaches and their applicability.

Structure

In this chapter, we will cover the following topics:
e Divide and conquer
e Greedy approach
e Dynamic programming and backtracking
[]

Longest common subsequence

Objectives

This chapter presents an overview of various methodologies, including the Greedy
approach.

Divide and conquer, dynamic programming, and backtracking. This chapter also
explains the difference between divide and conquer and dynamic programming and
between dynamic programming and backtracking. Each methodology is explained
using examples and numerical. Finally, the chapter will help you to move towards
applying the learnt methods to solve problems.

Design Methodologies 19

Greedy approach

Axl is a teenager, who lives in Orson. He decides to open his burger joint named
“The HecksBurger”and employs his younger brother Brick to handle the cash
counter. The cash counter has bills having denominations 500, 100, 50, 20, 10, 5, and
1. Assuming that the prices of the burgers are in natural numbers, how do you think
he would return the change with a minimum number of bills?

Let us understand this with the help of an example: If he gets 1,000 and needs to
return 657. He will start with 500 (the highest denomination) and find the number
of bills of this denomination required by dividing the amount to be returned by the
denomination (and then taking the floor), which is 657/500, which is 1. Now, the
remaining balance can be found by subtracting from 657, which gives 157. This is
followed by repeating the process with the next highest denomination. That is, for
finding the number of denominations of 100, divide the remaining, i.e., 157 by 100
(and then take the floor), which gives 1. The remaining amount in the next step will
be . Likewise, the number of notes of 50, 20, 10, 5, and 1 will be 1, 0, 0, 0, and 2. That
is, the number of bills required for change are [1, 1,1, 0, 0, 0, 2].

The following Python code takes the amount to be returned as the input along with
a list containing denominations in the sorted order and returns the list containing
the number of denominations.
Code:
def coin_changing(L, amount):
denomination = []
i=0
while(i<len(L)):
num = int(amount/L[i])
amount = amount - num*L[i]
denomination.append(num)
i+=1
return denomination
L=[500, 100, 50, 20, 10, 5, 2, 1]
print(len(L))
den=coin_changing(L, 657)
print(den)

Output:
1. 8

2. [1, 1,1, 0, 0, 1, 1, 0]

20 Data Structures with Python

The preceding is an example of a Greedy approach, since at each step, the “best
option at that point” is selected, and we proceed further. The approach is good but
might not lead to an optimal solution always. We will explore this approach further
in the chapters that follow. Particularly, this approach would be used to solve the
minimum spanning tree problem.

Divide and conquer

In order to understand divide and conquer, let us consider the following illustration.
Once upon a time, there was a king named Harsh. He was overtly fascinated with
himself, and hence, stopped the coins used earlier in the kingdom. The new coins
had his photo engraved. Moreover, all the subjects of the kingdom were asked to do
the transactions in 2* coins, where keZ, for reasons which only future generations
would understand.

The group of corrupt people called corrupts followed a protocol. They used to give
one fake coin while doing a transaction. The weight of the fake coin was not the
same as that of the original coin, and we do not know the weight of the valid coin.
In order to identify the fake coin from the given coins in a transaction, the Algorithm
department (he had established this department after selling the government IT
company to his businessman friend) came up with an interesting solution, which is
as follows:

Divide the set of n coins into two sets having 1/2 coins each. If the weights of the
two sets are equal, then there is no fake coin in the given set of n coins. In the other
case, divide each set of 1/2 coins into two sets of /4 coins. The part whose two
subsets of n/4 coins have equal weights do not have any fake coin, and the other
set has a fake coin. The remaining coins can be divided further to reach a set of two
coins, one of which is fake. Finally, the fake coin can be identified by comparing the
remaining two coins with any coin in the set containing valid coins.

Figure 2.1 exemplifies the solution. In case there are 16 coins, then the coins can
be divided into two sets having eight coins each. One of the sets has a fake coin.
When the sets are further divided into two sets (we will have four sets of four coins).
The two parts having the same weight (shown in gray) will not have any fake coin
because there is only one fake coin, and the set having the fake coin will show
different weights of its two subsets. The process is repeated till the last level (at
which we have just one coin).

Note that the depth of the preceding tree is , as it the second level, there will be
1n/2 elements in each subset; at the third, there will be n/22 in the next step, there
will be n/2%values, the process stops when only one value remains. That is, when
n/2'=1, orlog,n.

Design Methodologies 21

PN

T e

Both the subsets have same \ /\

weight indicating that the fake

coin is in neither of them

Either of these two coins is ;

fake

Figure 2.1: Finding a fake coin

This was an example of divide and conquer. In divide and conquer, we divide the
given problem into sub-problems of the same type. If needed, the solutions to all
these problems are then clubbed, and the final solution is returned.

This technique can also be applied to problems like searching if the given array is
sorted. The following chapters discuss some of the important applications of divide
and conquer, such as merge sort, quick sort, matrix multiplication, exponentiation,
and so on.

Backtracking and dynamic programming

Mathematical researchers faced some problems in the 1950s. Charles Erwin Wilson
was the Secretary of Defense under President Eisenhower. Earlier, he worked as the
CEO of General Motors. According to Bellman, “he had pathological fear and hatred of
the word research”. This gives an idea of his relationship with mathematics. Bellman
was working with the RAND Corporation that was employed by the Air Force. To
hide that he was doing mathematics inside RAND, he devised the word Dynamic
Programming so as to save the project that RAND got from being scrapped [1].

22 Data Structures with Python

In Dynamic Programming (DP), we divide the problem into smaller subproblems,
and the solution to these smaller problems helps to construct that of the bigger
one. Here also we divide the problem into subproblems like in the case of divide
and conquer, but there is a difference. In divide and conquer, all the problems
are solved individually, and then if needed, the solution is combined. In dynamic
programming, on the other hand, the smaller solutions contribute to the larger ones,
which contribute to still larger ones. This technique is effective, much more effective
than techniques like backtracking.

To understand this, consider a simple program to find the factorial of a
number. The factorial of a number is found by taking the product of all the numbers
starting from 1 to that number, that is,

nl=1x2x3x%x...xn
Note that,
nl=1x2x3x..xm-1)xn=m-1)!xn
That is,
fac(n) = n x fac (n-1)
factorial can be expressed in terms of itself and the base case, which is
fac(1) =1

The following code assumes that the user enters a number > 1. For negative
numbers, the code can be modified by including a branch in the if-elif-else ladder.
The implementation of the preceding using recursion is shown as follows:
Code:
def fac(n):
if n==1:
return 1
else:
return fac(n-1)*n

Output:

>>fac(1)

1

>>fac(8)

40320

>>fac(40)
815915283247897734345611269596115894272000000000

Design Methodologies 23

The preceding program is not the most efficient approach to solve this problem.
The reason is that in calculating the factorial of higher numbers, that of the lower
numbers is calculated again and again. To understand this, have a look at figure 2.2.
Note that in calculating a factorial of 7, that of 6 is required, for which that of 5, 4,
3,2, and 1 are required. A factorial of 1 is the base case of this recursive algorithm.

T

1X2X3X4X5X6X7

T

1X2X3X4X5X6

1X2X3X4X5

1X2X3X4

\

e

4

1X2X3

1X2

Figure 2.2: Factorial using recursion

Now, consider the following implementation of factorial. Here, a list stores the
factorial of a number and can be used to find the factorial of the later numbers.
Code:

def facl(n):

fac_num=[]

24 Data Structures with Python

if n==1:
fac_num.append(1)
else:
fac_num.append(1)
for i in range(1, n):
fac_num.append(fac_num[i-1]*(i+1))

return fac_num[-1]

Output:
facl1(40)
815915283247897734345611269596115894272000000000

This solution requires O(n) time. Note that this solution calculates the factorial of
a number, and the result is used to find the factorial of a larger number. That is,
memoization helps in reducing the complexity of the algorithm. Let us consider
another problem to understand the concept.

Longest common sub-sequence

This section aims to find the longest common sub-sequence, given two strings. For
example, if the first string is as follows:

strl = “ghijklmno”

and the second string is:
str2 = “gijo”

Then the longest common sub-sequence is “gijo”, as the alphabet “g” is at the Oth
index in the first string, “i” is at the 2nd index, “j” at the 3rd, and “0” is at the 8th
index. Note that the matching indices in the first string are {0, 2, 3, 8}, which is an
increasing sequence. The sequence of matching indices should be ordered.

As such, the problem seems easy. Find all the common sub-sequences of the two
strings and return the longest. Wait! Try and implement this solution, and you will
realize that this solution has an exponential time complexity.

Another option can be to use backtracking. In backtracking, we start with the Oth
index and check if the alphabets at this index match. If they match, we increment
the value of indices in both the strings and proceed further, else we explore both
options: that of incrementing the index of the first string, keeping that of the second
same,and the other of incrementing the index of the second keeping that of the first
same.

In figure 2.3, the root node compares the character at the 0" index of the two strings.
Since they are equal, the values of both i and j are incremented. Note that str1[1] is

