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Preface

Why did we write this book?

After writing our first book, Principles of Software Architecture Modernization, we realized 
we had more things to say: about culture, about discipline, feedback, and principles to 
help software engineering teams realize they CAN change their software and don’t have 
to stay stuck in the past. 

Our first book heavily discussed the problems of working in legacy software, but you do 
not always have a budget or modernization project. We wanted to review all the invisible 
things, new ways of working, and the secret power of engineers who hold the power in 
their own hands. With discipline and principles, anything can change.

We also realized that selling a modernization project is a big deal, and takes time, 
preparation, and patience even beyond the assessments we wrote in Chapter 5, Assessments 
of Principles of Software Architecture Modernization. A background in sales and negotiation 
is useful for everyone, even and especially the engineers on the ground. 

We wanted to challenge the current ways of working in big companies. Process is not 
always the answer to every problem. Instead, the root of real change lies in company 
culture. If they don’t believe in modernizing technology, don’t change the goal - change 
the company itself.

Our book will not give you easy answers or a magic formula for success. We are here to 
make you think and explore different options to change the way you think and book. 
Continuous Modernization is a philosophy book, even more so than our first. If you want 
a magic wand to fix your problems, this book is not for you.

We will be very visual in this book, so expect a lot of diagrams to help convey our points. 
Our book is Java-centric but not code-heavy; you will see some pseudocode examples but 
do not expect complete applications built end to end. This is not a tutorial book. 

We will be very technical in this book and will connect many different subjects, but don't 
worry; we will explain things in depth and with lots of practical scenarios and examples. 
The topics we will cover are wide-ranging, and sometimes we will review the same points 
from different angles to uncover different perspectives. We hope you like it, and thank you 
in advance for your readership.
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However, while reading this book, you can expect:

• Examples: Practical examples from our experience in technology. 

• Tradeoff Analyses: Architecture is all about tradeoffs, so expect many comparisons 
of pros and cons.

• Figures: Many diagrams and pictures to illustrate scenarios, tradeoffs, and options.

• Multiple Options: We will provide multiple options and the best analysis to make 
you consider the entire problem space.

• Repetition: We will repeat some principles over and over, analyzing them in 
different contexts to gain new understanding. 

• Summary & Learning: Every chapter will have a summary of things to remember 
from each chapter. This is a long book, and you might need to read it multiple 
times; make notes in whatever way works for you, and look back on what you 
find interesting or disagree with. (The authors love disagreements!) Remember 
that when you just passively read (input) you don’t learn as much as when you 
produce (output). You can write a blog post, run a lightning talk or presentation to 
your engineers or company, talk to a friend, it is important to produce output, and 
we believe that’s the best way to learn anything, not only this book.

In summary, this book will not have:

• Easy Answers: There is no magic formula to fix your monoliths, just options we 
will help you navigate and digest to find your own answers. No quick fixes to your 
complex problems, just reality.

• Tutorials: You won't find step-by-step instructions on how to build applications. 
This is not a tutorial book. 

Book Structure

The book is organized in the following chapters:

Chapter 1 - What is Continuous Modernization?

Chapter 2 - Unlearning

Chapter 3 - Discipline & Feedback 

Chapter 4 - Decisions & Tradeoffs

Chapter 5 - Stability & Troubleshooting

Chapter 6 - Opportunistic Design
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Chapter 7 - Continuous Refactoring

Chapter 8 - The Art of Selling      

Chapter 9 - Effective Negotiation

Chapter 10 - Culture Shift

Chapter 11 – Epilogue

Our chapters are divided into three important sections: Learning, Execution, and Scaling. 
First, you need to learn new skills that will change how you approach problems. Execution 
is about getting things done. Scaling is how we can have a bigger impact on the company, 
from bigger modernization projects to changing the company itself. Let’s dive a bit more 
into each chapter.

Learning

Understanding what continuous modernization is all about. Shifting your mindset and 
upskilling yourself with powerful and game-changing soft skills to make better software 
every day, day-by-day. First you improve yourself, then you improve the software you 
build.

Covered in chapters:

Chapter 1 - What is Continuous Modernization?

Chapter 2 - Unlearning

Chapter 3 - Discipline & Feedback 

Chapter 4 - Decisions & Tradeoffs

Execution

Approach execution through a different lens and apply improvements even without a 
modernization project. Execution is all about practical, day-to-day scenarios that will 
change how you and your team behave and achieve better results.

Covered in chapters:

Chapter 5 - Stability & Troubleshooting

Chapter 6 - Opportunistic Design

Chapter 7 - Continuous Refactoring
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Scaling

After establishing a successful track record with lots of quick wins, now we can take things 
to the next level. Selling modernization projects takes both technical skills and soft skills. 
Negotiating a good outcome means understanding how to speak to management without 
compromising your values. Culture is the final barrier to any modernization initiative, 
and Continuous Modernization will show you how to improve not just your software and 
teams but the company itself.

Covered in chapters:

Chapter 8 - The Art of Selling      

Chapter 9 - Effective Negotiation

Chapter 10 - Culture Shift

Chapter 11 - Epilogue
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Coloured Images of the book:
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Errata
We take immense pride in our work at BPB Publications and follow best practices to 
ensure the accuracy of our content to provide with an indulging reading experience to our 
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve 
upon human errors, if any, that may have occurred during the publishing processes 
involved. To let us maintain the quality and help us reach out to any readers who might be 
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’ 
Family. 
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Piracy
If you come across any illegal copies of our works in any form on the internet, 
we would be grateful if you would provide us with the location address or 
website name. Please contact us at business@bpbonline.com with a link to 
the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either 
writing or contributing to a book, please visit www.bpbonline.com. We have 
worked with thousands of developers and tech professionals, just like you, to 
help them share their insights with the global tech community. You can make 
a general application, apply for a specific hot topic that we are recruiting an 
author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave 
a review on the site that you purchased it from? Potential readers can then see 
and use your unbiased opinion to make purchase decisions. We at BPB can 
understand what you think about our products, and our authors can see your 
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the 
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com
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Continuous improvement is better than delayed perfection.

- Mark Twain

Diego worked as a consultant with a financial service company in 2008. There was a 
meeting with the CEO to strategize a plan for a new system built from scratch in Java. 
Our company had a legacy system written in Clipper1 that was slow and did not scale. 
The CEO said, "I want a system that can last many years. I don’t want to be re-writing 
systems all the time.” That was such a powerful statement. Diego was thinking: “How can 
one write a system that lasts many years?” After more than twenty years of working with 
software in several industries, we can spot some common themes, one being that systems 
are never good enough. Therefore the need to modernize.

Today’s environments did not get any better; instead, the systems are much more 
complex and entangled. Legacy systems, web, mobile, monoliths, distributed monoliths, 
and on-prem data centers are mixed with multiple cloud providers and multiple SaaS 
vendors. We could just give up due to all this complexity. Hopefully, there is another way 
we can survive and navigate such complex environments and do better. If you ask any 
engineer what they want to do, the answer is unanimous: refactoring. Engineers hope 
that if they perform refactoring, problems will go away. Often, this hope is bundled into a 
modernization project. But what if you don't have this project? What if you must wait 3-5 
years for such a project? What do you do in between? 

1. Clipper programing language https://en.wikipedia.org/wiki/Clipper_(programming_language)
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Continuous Modernization is a mindset. It’s a fresh take on day-to-day problems. 
Surviving, adding value, and making better products where before might look impossible. 
Continuous Modernization implies working with legacy systems, monoliths, and 
distributed monoliths. Continuous Modernization is how we will reduce your future 
problems and improve products while delivering features, refactoring, and improving 
code daily.

Structure
In this chapter, we will cover the following topics: 

•	 Legacy Systems

o What is a legacy system?
o Legacy systems deliver value
o Working with legacy systems
o Amplifiers
o Backfire
o Opportunities
o Waste, Technical Debt, and Anti-Patterns

•	 Modernization Projects

o What if you don't have a modernization project? No Budget?
o What if your people are not convinced?
o What if you can't re-write it all?

•	 Continuous Modernization is a Philosophy

o The Snowball Effect: Small improvements lead to big outcomes over time
o Learning and Upskilling
o The True Nature of Software Development
o Growth vs. Fixed Mindset
o Behavior Iceberg
o Limiting Beliefs
o What should we learn first?
o You are the product

•	 Continuous Modernization Execution

o Consultant Mindset
o Strategy and Techniques
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•	 Stability and Troubleshooting
•	 Opportunistic Design
•	 Continuous Refactoring

•	 Scaling

o Going beyond process
o The Art of Selling
o Effective Negotiation
o Culture Shift

•	 Common Mistakes

o #1 Anti-pattern: Modernization is just for big projects!
o #2 Anti-Pattern: My team needs permission!
o #3 Anti-pattern: We already changed too much, we are good!
o #4 Anti-pattern: Modernization does not work for us, we are unique
o #5 Anti-pattern: No time, No people to do anything

•	 Things to Remember

Legacy Systems
All companies have legacy systems, usually more than one. Legacy systems are often 
very bad, full of anti-patterns, technical debt2, bad decisions, bad code, and lack of tests. 
Engineers don’t like working with legacy systems, and there is constant tension, frequently 
leading to a high turnover (Figure 1.1). 

Figure 1.1: Legacy System - 2011 US Navy MS-DOS food service management system

Source: https://en.wikipedia.org/wiki/File:US_Navy_110129-N-7676W-152_Culinary_Specialist_3rd_Class_John_Smith_uses_the_existing_DOS-

based_food_service_management_system_aboard_the_aircraft.jpg

2. Technical debt by Fowler https://martinfowler.com/bliki/TechnicalDebt.html
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What is a legacy system?
A legacy3 system is a computer system that is outdated but still being used. Most of the 
time, legacy systems still exist due to the cost of refactoring and the cost of migrating to 
new systems. Such systems often have:

•	 Outdated Technology: Technology that is not the most optimal way of doing 
things. For instance, we could have a user interface in Java using JSF. However, 
currently, the common way to do it would be using NodeJS and React or meta-
framework alternatives like Next.js4.

•	 Bad Decisions: Including weak and complex abstractions code that does not make 
sense anymore. The team might know a better method, however, the code was 
not refactored to express the new optimal way of doing things. Bad decisions 
can be expressed in a variety of ways like poor data schema design, poor input 
validations, wrong assumptions, poor error handling, and lack of observability.

•	 Technical Limitations: Legacy systems often have limits imposed either by the 
technology used and/or the bad decisions made over the years. For instance, if 
we have a desktop system, we cannot make that system be accessed via a mobile 
application. 

Legacy systems deliver value
Legacy systems are not the most desired piece of software for engineers however, for 
companies, they often add value. A good starting point would be acknowledging that 
legacy systems have good traits; there are many problems related to legacy systems, but 
there are good things in their favor, such as:

•	 Profit: Legacy systems are not hypothetical; they live in production. You might not 
like the code, technology, and decisions, but you must admit that legacy systems 
are how your company makes money. Why is this trait essential? Whatever you do, 
you must drive profits, with real business value and perceived customer impact. 

•	 Active Users: Legacy systems in production have users. Having real users doubles 
down on the system value, presenting important future opportunities in the sense 
of growth. Let’s say your company has a legacy desktop system with 1M users, 
now you build a mobile solution, and you have 150k users. The legacy system 
presents a user base that can grow to 850k users in the new mobile system. It’s only 
possible to have users when we solve a real problem.

•	 Baseline Testing: It’s non-obvious, but there is a testing benefit. Legacy systems 
are notorious for having poor coverage or no coverage at all, so you might be 

3. Wikipedia definition of legacy system https://en.wikipedia.org/wiki/Legacy_system
4. Next.js by Vercel - Javascript and Typescript web framework https://nextjs.org/
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wondering how testing can benefit them. When you write or have a new system, 
you can compare both systems. You can check how much the new system deviates 
from the old one. Yes, you still need to write such tests against the old system, but 
you have a baseline for measurements. 

•	 It works(-ish): A legacy system wouldn't have survived or had users unless it 
did something right. A happy path that delivers value and works consistently. Of 
course, surrounded by landmines, but you can learn something from a hardened 
process.

Not all legacy systems drive profits, but when that happens, such systems are often called 
core business systems. Not all legacy systems have a huge user base and are actively used; 
in that case, it’s an opportunity to get rid of them since their profit and usage are low. 
Legacy systems deserve some respect; after all, they drive profits by solving real problems 
and running in production for many years. 

Working with legacy systems
Considering the 90s as a starting point, it was possible to have companies that were not 
using software at all. Many of us did not live in such a time as professionals but had 
professors and friends talking about when companies were just using paper and process. 
Today, all companies have software; unless you have a startup, you always start with 
one or many legacy systems. Not only do companies have a software, but they also have 
scale; software does not shrink; it just gets bigger. You might be wondering where we are 
going with all this. There is no escape from legacy systems. No matter the company you 
go to, you will find a legacy system. Therefore, there is also no escape from monoliths and 
distributed monoliths.

Legacy systems are the norm, the reality, the default. We need a better approach. Otherwise, 
our lives will only get worse. The million-dollar question is how you will approach legacy 
systems properly. Continuous Modernization is the way. However, let’s not jump to the 
solution yet. Let’s understand the problem a bit more.

Amplifiers
Users want to solve problems and achieve their goals, no matter whether the system is 
legacy or not. Companies still need to deliver customer value and good experiences to 
users and make a profit. By definition, if the company wants to survive, it needs to keep 
involving legacy systems, creating new products that depend on legacy systems either by 
creating new features, fixing bugs, or keeping up with compliance. Therefore, there is a 
constant need for change in legacy systems. Some factors and social phenomena amplify 
problems that legacy systems have, forces and factors like:

•	 Engineering turnover and group fear: Engineers do not like working with legacy 
systems, and they quit, creating a turnover problem. Then, you have fewer 


