
 i

Continuous
Modernization

The never-ending discipline of improving
microservices, monoliths, distributed monoliths,

 individuals, and teams at scale

Diego Pacheco
Sam Sgro

www.bpbonline.com

ii

First Edition 2025

Copyright © BPB Publications, India

ISBN: 978-93-65893-106

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced by the means of
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in
this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

 iii

About the Authors

l Diego, Co-Author

Diego Pacheco is a seasoned, experienced Brazilian software architect, author,
speaker, technology mentor, and DevOps practitioner with more than 20+ years
of solid experience. I've been building teams and mentoring people for over a
decade, teaching soft skills and technology daily. Selling projects, hiring, building
solutions, running coding dojos, long retrospectives, weekly 1:1s, design sessions,
code reviews, and my favorite debate club: architects community of practices
and development groups for more than a decade. Live, breathe, and practice
real agile since 2005, coaching teams to help many companies discover better
ways to work using Lean, Agile principles, and methods like XP and DTA. I've
led complex architecture teams and engineering teams at scale guided by SOA
principles, using a variety of open-source languages like Java, Scala, Rust, Go,
Python, Groovy, Javascript and Typescript, cloud providers like AWS Cloud
and Google GCP, amazing solutions like Akka, ActiveMQ, Netty, Tomcat and
Gatling, NoSQL databases like Cassandra, Redis, Elasticache Redis, Ekasticsearch,
Opensearch, RabbitMQ, libraries like Spring, Hibernate, and Spring Boot and
also the NetflixOSS Stack: Simian Army, RxJava, Karyon, Dynomite, Eureka, and
Ribbon. I’ve implemented complex security solutions at scale using AWS KMS, S3,
Containers (ECS and EKs), Terraform, and Jenkins. Over a decade of experience
as a consultant, coding, designing, and training people at big customers in Brazil,
London, Barcelona, India, and the USA(Silicon Valley and Midwest). I have a
passion for functional programming and distributed systems, NoSQL Databases,
an obsession for Observability, and always learning new programming languages.

Currently working as a principal Software Architect with AWS public cloud,
Kubernetes/EKS, performing complex cloud migrations, library migrations,
server and persistence migrations, and security at scale with multi-level envelope
encryption solutions using KMS and S3. While still hiring, teaching, mentoring,
and growing engineers and architects. During my free time, I love playing with
my daughter, playing guitar, gaming, coding pocs, and blogging. Active blogger
blog at diego-pacheco.blogspot.com.

iv

l Sam, Co-Author

Sam has always been passionate about applying engineering to complex business
domains. Sam started his career in open-source cryptography before joining
an early-stage bioinformatics & data analytics startup with a successful exit to
Thomson Reuters. Sam then worked as an engineering leader, leading teams on
multimillion-dollar growth initiatives in pharmaceutical research and academic
literature analysis. In 2018, Sam switched gears to FinTech by joining a FinTech
company in the Bay Area as its Chief Architect, where he now serves as Head of
Consumer Engineering, driving its digital banking initiatives.

 v

About the Reviewer

Garen Mnatsakanov is currently leading Engineering at a FinTech company in the Bay
Area. After college, he took on every opportunity in tech that came his way and this has
led him to gain a ton of invaluable experience. To this day, he tries to stay hands-on and
code, even though being in a leadership role it is harder to find the time. Garen thinks it
is a must if you want to stay technical, especially in the ever-changing field of software
engineering. He has a passion for building effective product engineering teams that can
work closely together to deliver great products.

To Diego and Sam,

I want to thank you again for the opportunity to be the technical reviewer of your second
book. Once again, you guys have demonstrated your passion for software architecture
and modernization and towards building a strong engineering culture. A culture that
enables businesses to grow, succeed, and scale, leveraging their technology instead of
being burdened by it.

To my mom, dad, sister, and nephew, thank you for your love and care. And to my wife
Andrea, thank you for your support and encouragement, it means a lot to me.

-Garen Mnatsakanov, Technical Reviewer

vi

Acknowledgements

m Diego, Co-Author

Thanks, God, Thanks, God, Thanks, God. I appreciate all my blessings, I wrote this
book with love, passion, and lots of hard work. I wish we could share the same
passion for software architecture, design, and complex problems. Deeply rooted
in this, you can make a big impact in your organization and grow in your career
and as a human being. Thank you for buying my book, I really appreciate it. I hope
my experience and perspectives guide you in your journey. No matter if you are a
software architect, software engineer, engineering manager, DevOps engineer, QA
engineer, frontend engineer, director, VP, or CTO.

I have a deep passion for technology, especially for software architecture. My
passion could only happen due to the immense support of my loved family, my
wife Andressa, and my dear daughter Clara. My dear friends Margarida, Adao,
Israel and Tais, Jun, Richard, Ty, and many other friends are not named here, but
be sure you have a place in my heart… Brazil!

A small disclaimer: This book does not reflect the ideas, decisions, or opinions of
any of my past or future employers or customers in my last 20+ years of experience
with distributed systems and systems at scale, working for companies, and doing
consultancy.

m Sam, Co-Author

The ideas in this book are the continuation of the work we started in Principles of
Software Architecture Modernization. I am grateful to get the opportunity to continue
the themes we started in that book, to help educate teams on what it really means
to change code and change their companies. In turn, I hope it inspires you and
propels you forward on your journey of professional transformation, to assemble
great teams and work on amazing things.

To my friends and family across Canada, the US, Spain, the UK, and Brazil, and
especially my beloved wife Claudia and children Kat and Erica, thank you for
your patience and for giving me the space to do all the work needed to see these
ideas hit print.

 vii

Preface

Why did we write this book?

After writing our first book, Principles of Software Architecture Modernization, we realized
we had more things to say: about culture, about discipline, feedback, and principles to
help software engineering teams realize they CAN change their software and don’t have
to stay stuck in the past.

Our first book heavily discussed the problems of working in legacy software, but you do
not always have a budget or modernization project. We wanted to review all the invisible
things, new ways of working, and the secret power of engineers who hold the power in
their own hands. With discipline and principles, anything can change.

We also realized that selling a modernization project is a big deal, and takes time,
preparation, and patience even beyond the assessments we wrote in Chapter 5, Assessments
of Principles of Software Architecture Modernization. A background in sales and negotiation
is useful for everyone, even and especially the engineers on the ground.

We wanted to challenge the current ways of working in big companies. Process is not
always the answer to every problem. Instead, the root of real change lies in company
culture. If they don’t believe in modernizing technology, don’t change the goal - change
the company itself.

Our book will not give you easy answers or a magic formula for success. We are here to
make you think and explore different options to change the way you think and book.
Continuous Modernization is a philosophy book, even more so than our first. If you want
a magic wand to fix your problems, this book is not for you.

We will be very visual in this book, so expect a lot of diagrams to help convey our points.
Our book is Java-centric but not code-heavy; you will see some pseudocode examples but
do not expect complete applications built end to end. This is not a tutorial book.

We will be very technical in this book and will connect many different subjects, but don't
worry; we will explain things in depth and with lots of practical scenarios and examples.
The topics we will cover are wide-ranging, and sometimes we will review the same points
from different angles to uncover different perspectives. We hope you like it, and thank you
in advance for your readership.

viii

However, while reading this book, you can expect:

• Examples: Practical examples from our experience in technology.

• Tradeoff Analyses: Architecture is all about tradeoffs, so expect many comparisons
of pros and cons.

• Figures: Many diagrams and pictures to illustrate scenarios, tradeoffs, and options.

• Multiple Options: We will provide multiple options and the best analysis to make
you consider the entire problem space.

• Repetition: We will repeat some principles over and over, analyzing them in
different contexts to gain new understanding.

• Summary & Learning: Every chapter will have a summary of things to remember
from each chapter. This is a long book, and you might need to read it multiple
times; make notes in whatever way works for you, and look back on what you
find interesting or disagree with. (The authors love disagreements!) Remember
that when you just passively read (input) you don’t learn as much as when you
produce (output). You can write a blog post, run a lightning talk or presentation to
your engineers or company, talk to a friend, it is important to produce output, and
we believe that’s the best way to learn anything, not only this book.

In summary, this book will not have:

• Easy Answers: There is no magic formula to fix your monoliths, just options we
will help you navigate and digest to find your own answers. No quick fixes to your
complex problems, just reality.

• Tutorials: You won't find step-by-step instructions on how to build applications.
This is not a tutorial book.

Book Structure

The book is organized in the following chapters:

Chapter 1 - What is Continuous Modernization?

Chapter 2 - Unlearning

Chapter 3 - Discipline & Feedback

Chapter 4 - Decisions & Tradeoffs

Chapter 5 - Stability & Troubleshooting

Chapter 6 - Opportunistic Design

 ix

Chapter 7 - Continuous Refactoring

Chapter 8 - The Art of Selling

Chapter 9 - Effective Negotiation

Chapter 10 - Culture Shift

Chapter 11 – Epilogue

Our chapters are divided into three important sections: Learning, Execution, and Scaling.
First, you need to learn new skills that will change how you approach problems. Execution
is about getting things done. Scaling is how we can have a bigger impact on the company,
from bigger modernization projects to changing the company itself. Let’s dive a bit more
into each chapter.

Learning

Understanding what continuous modernization is all about. Shifting your mindset and
upskilling yourself with powerful and game-changing soft skills to make better software
every day, day-by-day. First you improve yourself, then you improve the software you
build.

Covered in chapters:

Chapter 1 - What is Continuous Modernization?

Chapter 2 - Unlearning

Chapter 3 - Discipline & Feedback

Chapter 4 - Decisions & Tradeoffs

Execution

Approach execution through a different lens and apply improvements even without a
modernization project. Execution is all about practical, day-to-day scenarios that will
change how you and your team behave and achieve better results.

Covered in chapters:

Chapter 5 - Stability & Troubleshooting

Chapter 6 - Opportunistic Design

Chapter 7 - Continuous Refactoring

x

Scaling

After establishing a successful track record with lots of quick wins, now we can take things
to the next level. Selling modernization projects takes both technical skills and soft skills.
Negotiating a good outcome means understanding how to speak to management without
compromising your values. Culture is the final barrier to any modernization initiative,
and Continuous Modernization will show you how to improve not just your software and
teams but the company itself.

Covered in chapters:

Chapter 8 - The Art of Selling

Chapter 9 - Effective Negotiation

Chapter 10 - Culture Shift

Chapter 11 - Epilogue

 xi

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

Coloured Images
Please follow the link to download the

Coloured Images of the book:

https://rebrand.ly/5b2uqrq

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices to
ensure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes
involved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

xii

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

 xiii

Table of Contents

 1. What is Continuous Modernization? ... 1
 Structure ... 2
 Legacy Systems ... 3
 What is a legacy system? ... 4
 Legacy systems deliver value .. 4
 Working with legacy systems ... 5
 Amplifiers ... 5
 Backfire ... 7
 Opportunities ... 7
 Waste, Technical Debt, and Anti-Patterns .. 9
 Modernization Projects .. 10
 What if you don't have a modernization project? No Budget? 10
 What if your people are not convinced? ... 11
 What if you can't re-write it all? ... 12
 Continuous Modernization is a Philosophy ... 13
 The Snowball Effect: Small improvements lead to big outcomes over time 14
 Learning and Upskilling .. 16
 The True Nature of Software Development .. 16
 Growth vs. Fixed Mindset .. 18
 Behavior Iceberg ... 18
 Limiting Beliefs .. 19
 What should we learn first? ... 19
 You are the product ... 22
 Continuous Modernization Execution .. 23
 Consultant Mindset ... 25
 Strategy and Techniques .. 26
 Stability & Troubleshooting ... 26
 Opportunistic Design .. 26
 Continuous Refactoring ... 26

xiv

 Scaling .. 26
 Going beyond process ... 27
 The Art of Selling ... 27
 Effective Negotiation .. 27
 Culture Shift ... 27
 Common Mistakes ... 27
 #1 Anti-pattern: Modernization is just for big projects! ... 28
 #2 Anti-Pattern: My team needs permission! ... 28
 #3 Anti-pattern: We already changed too much, we are good! 28
 #4 Anti-pattern: Modernization does not work for us, we are unique 29
 #5 Anti-pattern: No time, No people to do anything .. 29
 Things to Remember .. 29

 2. Unlearning ... 33
 Structure ... 33
 Unlearning #1: Code is a liability ... 35
 Unlearning #2: Timelines above it all .. 36
 Unlearning #3 - You cannot modernize and deliver ... 37
 Unlearning #4 - User experience is just look-and-feel .. 38
 Customer Experience (CX) ... 40
 Unlearning #5 - Only juniors need to learn .. 40
 Unlearning #6 - Don’t touch it, do the minimal .. 42
 Unlearning #7 - I can’t convince my team .. 43
 Being the last vs. being the first ... 44
 Learning > Delivery ... 45
 Shallow vs. Deep Mindset ... 45
 Shallow vs. Deep: Dealing with Bugs .. 47
 Shallow vs. Deep: Dealing with Features .. 48
 Shallow vs. Deep: Code Migrations ... 49
 Shallow vs. Deep: Learning .. 50
 Beyond learning on demand! Effective Learning .. 52
 Input ... 53
 Reading ... 53

 xv

 Output .. 53
 Taking more from Feedbacks .. 55
 The Cost of Silence ... 56
 Learning from experiences and failures .. 57
 The issue with Delta reviews .. 58
 Discovery with Coding POCs .. 59
 Creating the environment you want to work in .. 59
 Hiring & Growing Talent .. 60
 Golden Goose Mentality (turning bad systems into good projects) 60
How do you manage your day - your agenda decides what you deliver or not 61
 Common Mistakes ... 62
 #1 Anti-Pattern: Analysis Paralysis ... 62
 #2 Anti-Pattern: Will impact timelines ... 62
 #3 Anti-pattern: I have no questions ... 63
 #4 Anti-pattern: I have no time for POCs ... 63
 #5 Anti-Pattern: I have no control over my agenda .. 63
 Things to Remember .. 63

 3. Discipline & Feedback .. 67
 Structure ... 67
 Discipline ... 69
 Limits of Compliance & Standards .. 70
 What discipline really is about ... 70
 Interruptions .. 73
 Triage .. 75
 Eisenhower Method .. 76
 Deep Work .. 76

 Playing with discipline ... 76
 Agenda ... 77

 More time or more focus? ... 78
 XP Baby Steps .. 79
 Crawl, Walk, Run, Fly ... 79

 Experiments.. 79

xvi

 Daily ... 80

 Feedback .. 80
 Feedback usually sucks ... 81
 Feedback common mistakes .. 82
 Good vs. Bad Feedback ... 82
 The Cost of Firing People ... 85
 The Cost of NOT Firing People ... 86

 Economics of Feedback ... 86
 Limits of Group Meetings .. 89
 Retrospectives ... 90
 Embedding Feedback .. 92
 1:1s ... 92
 Common Mistakes ... 93
 #1 Anti-Pattern: Standardization over discipline ... 93
 #2 Anti-Pattern: Waterfall .. 94
 #3 Anti-Pattern: No Feedback, Shallow Feedback ... 94
 #4 Anti-Pattern: Too many meetings .. 94
 #5 Anti-Pattern: No Retrospectives .. 94
 #6 Anti-Pattern: 15 min Retrospectives .. 94
 #7 Anti-Pattern: No 1:1s ... 94
 Things to Remember .. 95

 4. Decisions & Tradeoffs .. 99
 Structure ... 100
 Thinking vs. Acting .. 101
 A bias to action should not be your only bias ... 101
 Meeting-first vs. Writing-first cultures ... 103
 The power of thinking clearly ... 105
 Avoiding Analysis Paralysis .. 107
 Strength in Depth vs. a Shallow Understanding ... 108
 Tradeoffs .. 109
 Choice is Everything .. 109
 The Art of Tradeoffs .. 110

 xvii

 Sidebar: Laying Strong Foundations ... 112

 Tradeoff Analysis In Practice .. 112
 Tradeoff Pyramid .. 112
 Continuous Modernization Tradeoff Analysis ... 114
 Understanding the Requirement, or “Why?” .. 114
 Anti-pattern: Order-taker .. 115
 Anti-pattern: Requirements contain the solution .. 116
 Sidebar: The Five Whys ... 116

 Identify Options, or “How” ... 117
 Inventory Advantages and Limitations ... 120
 Knowing your limits .. 120
 Playing to your Advantages .. 121

 Analyze Tradeoffs ... 122
 Scope, Quality, Time, and Cost .. 122
 One-way vs. Two-way doors .. 124
 Modernization vs. Debt ... 125
 Time vs. Flexibility ... 126
 Co-dependence vs. Isolation ... 126
 Buy vs. Build .. 127
 Size vs. Velocity ... 127
 Time vs. Discovery ... 128
 Sidebar: Research and Understanding ... 129
 Techniques to discover and model tradeoffs ... 131

 Decide ... 134
 Communicate and Commemorate: Decision Logs ... 135
 Every decision is eventually wrong ... 136
 Strategy vs. Tactics .. 136
 Opportunistic Design and Continuous Refactoring ... 137

 Common Mistakes ... 137
 #1 Anti-pattern: Pressure to Deliver ... 137
 #2 Anti-pattern: Accepting requirements at face value ... 138
 #3 Anti-pattern: False confidence, shallow knowledge .. 138
 #4 Anti-pattern: Reaching conclusions before the decision 138

xviii

 #5 Anti-pattern: Only listening to the loudest voices ... 138
 #6 Anti-pattern: Letting emotion overrule logic ... 138
 #7 Anti-pattern: Customer comes last ... 139
 Things To Remember ... 139

 5. Stability & Troubleshooting .. 143
 Structure ... 144
 Importance of Stability .. 145
 Reliability vs. Stability: how to sleep at night ... 148
 Progress on bad code begins with good foundations .. 150
 Introducing the Stability Mindset ... 151
 Stability and Troubleshooting in Practice ... 153
 Observability: Insight is everything .. 154
 Do you know what is happening? .. 154

 Logs .. 154
 Distributed Tracing .. 156
 Metrics ... 157
 Dashboards ... 160
 Alerts .. 162
 Signal vs. Noise .. 165

 Troubleshooting .. 167
 Proactively Investigating Code For Failure ... 167
 The Importance of the Scientific Method.. 169
 Step 1 – Observe .. 170
 Step 2 – Research ... 170
 Step 3 – Create a Theory / Hypothesis ... 171
 Step 4 - Experiment ... 171
 Step 5 – Analyze Data ... 172
 Step 6 – Report Conclusions .. 173
 Step ++ - Iterate ... 173

 Sidebar: debuggers and profilers .. 174
 Introducing Tests .. 177
 Common Mistakes ... 178

 xix

 #1 Anti-pattern: Thinking Stability means stasis ... 179
 #2 Anti-pattern: Believing Stability is the same as Reliability 179
 #3 Anti-pattern: Throwing logs at the problem and calling it done 179
 #4 Anti-pattern: Creating way too many alerts .. 179
 #5 Anti-pattern: Failing to diagnose the underlying problems driving your problem179
 #6 Anti-pattern: Allowing management to override science 180
 #7 Anti-pattern: Ignoring tests ... 180
 Things to Remember .. 180

 6. Opportunistic Design .. 183
 Structure ... 183
 Bad Designs ... 184
 Modern Designs ... 186
 What is design about? .. 186
 Elements of Good Designs .. 190
 Design multiple solutions .. 192
 The Issue with Designs and Abstractions .. 198
 See the invisible .. 198
 Planetary Alignment (win-win) ... 202
 Perception that Features always come before improvements 203
 Features are the best opportunity for change; just do it differently 204
 Opportunistic Design... 204
 2 steps forward, 1 backward ... 204
 “Slipstream” technique .. 207
 Common Mistakes ... 208
 #1 Anti-Pattern: There is no time, we need to deliver ... 208
 #2 Anti-Pattern: I don’t have a modernization project ... 209
 #3 Anti-Pattern: The problem is too big, we need a complete re-write 210
 #4 Anti-Pattern: No one asked me to do refactoring ... 210
 #5 Anti-Pattern: Dropping the Ball .. 210
 #6 Anti-Pattern: Refactoring the style of the code... 210
 #7 Anti-Pattern: A lot of things can go wrong, let’s stick to the standard.............. 211
 Things to Remember .. 211

xx

 7. Continuous Refactoring .. 213
 Structure ... 213
 Mindset .. 214
 Campground Rules ... 214
 Leveraging Open Source .. 219
 Daily Migrations (small bumps avoid big bumps) .. 230
 Talking through Code ... 230
 Dealing with dependencies via Contract Mocking .. 233
 Deleting Code ... 236
 Directly Referenced .. 238
 Private Visibility .. 238
 Default Package / Protected Visibility ... 239
 Public Visibility ... 239
 Indirectly Referenced .. 240
 Workspace Usage ... 240
 Repository Search ... 240
 Observability .. 242

 Dealing with testing ... 243
 Common Mistakes ... 243
 #1 Anti-Pattern: I have no time for refactoring ... 244
 #2 Anti-Pattern: There are no tests; we need a test env to test 244
 #3 Anti-Pattern: Delete and see what happens in production................................. 244
 #4 Anti-Pattern: My team does not want refactorings or testing 245
 #5 Anti-Pattern: It’s impossible to refactor the 3K LoC class! 245
 #6 Anti-Pattern: Let’s remove all boilerplate code and have it in a wrapper library245
 #7 Anti-Pattern: We need to deliver features; why do we need to do migrations ... 246
 Things to Remember .. 246

 8. The Art of Selling ... 249
 Structure ... 250
 Why sales is important to engineering .. 251
 A big leap forward .. 252
 Timing is everything .. 255

 xxi

 Building on Your Success ... 256
 People are the problem, and the solution .. 257
 Selling Your Idea ... 258
 Identifying Key Decision Makers ... 259
 Selling your decision-makers ... 262
 Tapping into emotion to drive modernization .. 262
 Key Selling Points .. 265

 Communicating Effectively .. 267
 Managing Upwards ... 267
 Managing Downward .. 269
 Communication Techniques ... 270
 Narrative: the steel thread .. 271
 Written Communication .. 272
 Verbal Communication & Presentations ... 274

 Common Mistakes ... 278
 #1 Anti-Pattern: Selling is distasteful, or something only managers do 278
 #2 Anti-Pattern: Not taking credit for past successes ... 278
 #3 Anti-Pattern: Choosing the wrong time or place .. 279
 #4 Anti-Pattern: Only managing upwards ... 279
 #5 Anti-Pattern: Only managing downwards .. 279
 #6 Anti-Pattern: Lacking empathy for others .. 279
 #7 Anti-Pattern: Failing to craft a narrative ... 279
 Things To Remember ... 280

 9. Effective Negotiation ... 283
 Structure ... 284
 You got them to the table. Now what? .. 285
 Negotiating Complex Business Tradeoffs ... 287
 The Power of Trust .. 287
 Empathy and Active Listening .. 290
 Sidebar: On Selling Purely Technical Projects .. 294

 Aligning Objectives ... 295
 When to Compromise .. 296

xxii

 Selling establishes value, negotiation trades value .. 296
 Compromise is a double edged sword ... 297
 Time vs. Money .. 299
 Time vs. Focus .. 300
 One way vs. Two way doors ... 300
 Team Location vs. Money ... 301
 Team Capacity vs. Feature Pipeline ... 301
 Flexibility vs. Principles .. 303

 Finding Reasonable Compromises.. 305
 Preparation is Key .. 305
 Aligning Expensive vs. Cheap ... 306

 Dealing with Politics .. 307
 Arriving at a Plan ... 309
 Always Mistrust Estimates.. 309
 Planning Must Not Become Waterfall ... 310
 Common Mistakes ... 312
 #1 Anti-Pattern: Loss of Trust ... 312
 #2 Anti-Pattern: Failing to Listen ... 312
 #3 Anti-Pattern: Compromising immediately ... 312
 #4 Anti-Pattern: Trying to please everyone ... 313
 #5 Anti-Pattern: Compromising your Principles .. 313
 #6 Anti-Pattern: Trusting Your Estimates .. 313
 #7 Anti-Pattern: Pursuing Certainty.. 313
 Things to Remember .. 314

 10. Culture Shift .. 317
 Structure ... 318
 What’s wrong with our process? .. 319
 What’s wrong with management? ... 321
 What’s wrong with work? ... 323
 Culture Matters ... 325
 Culture is expressed in every decision ... 325
 Culture Eats Strategy for Breakfast ... 327

 xxiii

 Cultural Revolutions in Tech .. 329
 Agile ... 329
 Lean .. 331
 Facebook: Move Fast, Break Things ... 333
 Netflix: No Rules Rules .. 334
 Blameless Culture ... 335
 Advancing your organization’s culture .. 337
 The Right Way To Scale ... 337
 Leveling Up Our Culture ... 339
 Ideal cultural values ... 341
 How do we shift culture? .. 344
 Continuous Modernization as Culture Shift ... 345
 Culture Shift In Practice .. 346
 Common Mistakes ... 348
 #1 Anti-Pattern: Roadmaps Written In Stone .. 348
 #2 Anti-Pattern: Management Is About Control .. 349
 #3 Anti-Pattern: Ignoring Culture .. 349
 #4 Anti-Pattern: Dark Agile .. 349
 #5 Anti-Pattern: Dogma over Understanding .. 350
 #6 Anti-Pattern: Failing to Learn and Grow .. 350
 #7 Anti-Pattern: Thinking Change Happens Overnight .. 350
 Things to Remember .. 351

 11. Epilogue ... 353
 Structure ... 353
 Never-ending War .. 354
 The Dark Side of LLMs .. 354
 Patience .. 356
 Slow but Steady Change ... 357
 Direction vs. Speed ... 358
 Index ..361-367

xxiv

What is Continuous Modernization? 1

Continuous improvement is better than delayed perfection.

- Mark Twain

Diego worked as a consultant with a financial service company in 2008. There was a
meeting with the CEO to strategize a plan for a new system built from scratch in Java.
Our company had a legacy system written in Clipper1 that was slow and did not scale.
The CEO said, "I want a system that can last many years. I don’t want to be re-writing
systems all the time.” That was such a powerful statement. Diego was thinking: “How can
one write a system that lasts many years?” After more than twenty years of working with
software in several industries, we can spot some common themes, one being that systems
are never good enough. Therefore the need to modernize.

Today’s environments did not get any better; instead, the systems are much more
complex and entangled. Legacy systems, web, mobile, monoliths, distributed monoliths,
and on-prem data centers are mixed with multiple cloud providers and multiple SaaS
vendors. We could just give up due to all this complexity. Hopefully, there is another way
we can survive and navigate such complex environments and do better. If you ask any
engineer what they want to do, the answer is unanimous: refactoring. Engineers hope
that if they perform refactoring, problems will go away. Often, this hope is bundled into a
modernization project. But what if you don't have this project? What if you must wait 3-5
years for such a project? What do you do in between?

1. Clipper programing language https://en.wikipedia.org/wiki/Clipper_(programming_language)

Chapter 1
What is Continuous

Modernization?

2 Continuous Modernization

Continuous Modernization is a mindset. It’s a fresh take on day-to-day problems.
Surviving, adding value, and making better products where before might look impossible.
Continuous Modernization implies working with legacy systems, monoliths, and
distributed monoliths. Continuous Modernization is how we will reduce your future
problems and improve products while delivering features, refactoring, and improving
code daily.

Structure
In this chapter, we will cover the following topics:

•	 Legacy Systems

o What is a legacy system?
o Legacy systems deliver value
o Working with legacy systems
o Amplifiers
o Backfire
o Opportunities
o Waste, Technical Debt, and Anti-Patterns

•	 Modernization Projects

o What if you don't have a modernization project? No Budget?
o What if your people are not convinced?
o What if you can't re-write it all?

•	 Continuous Modernization is a Philosophy

o The Snowball Effect: Small improvements lead to big outcomes over time
o Learning and Upskilling
o The True Nature of Software Development
o Growth vs. Fixed Mindset
o Behavior Iceberg
o Limiting Beliefs
o What should we learn first?
o You are the product

•	 Continuous Modernization Execution

o Consultant Mindset
o Strategy and Techniques

What is Continuous Modernization? 3

•	 Stability and Troubleshooting
•	 Opportunistic Design
•	 Continuous Refactoring

•	 Scaling

o Going beyond process
o The Art of Selling
o Effective Negotiation
o Culture Shift

•	 Common Mistakes

o #1 Anti-pattern: Modernization is just for big projects!
o #2 Anti-Pattern: My team needs permission!
o #3 Anti-pattern: We already changed too much, we are good!
o #4 Anti-pattern: Modernization does not work for us, we are unique
o #5 Anti-pattern: No time, No people to do anything

•	 Things to Remember

Legacy Systems
All companies have legacy systems, usually more than one. Legacy systems are often
very bad, full of anti-patterns, technical debt2, bad decisions, bad code, and lack of tests.
Engineers don’t like working with legacy systems, and there is constant tension, frequently
leading to a high turnover (Figure 1.1).

Figure 1.1: Legacy System - 2011 US Navy MS-DOS food service management system

Source: https://en.wikipedia.org/wiki/File:US_Navy_110129-N-7676W-152_Culinary_Specialist_3rd_Class_John_Smith_uses_the_existing_DOS-

based_food_service_management_system_aboard_the_aircraft.jpg

2. Technical debt by Fowler https://martinfowler.com/bliki/TechnicalDebt.html

4 Continuous Modernization

What is a legacy system?
A legacy3 system is a computer system that is outdated but still being used. Most of the
time, legacy systems still exist due to the cost of refactoring and the cost of migrating to
new systems. Such systems often have:

•	 Outdated Technology: Technology that is not the most optimal way of doing
things. For instance, we could have a user interface in Java using JSF. However,
currently, the common way to do it would be using NodeJS and React or meta-
framework alternatives like Next.js4.

•	 Bad Decisions: Including weak and complex abstractions code that does not make
sense anymore. The team might know a better method, however, the code was
not refactored to express the new optimal way of doing things. Bad decisions
can be expressed in a variety of ways like poor data schema design, poor input
validations, wrong assumptions, poor error handling, and lack of observability.

•	 Technical Limitations: Legacy systems often have limits imposed either by the
technology used and/or the bad decisions made over the years. For instance, if
we have a desktop system, we cannot make that system be accessed via a mobile
application.

Legacy systems deliver value
Legacy systems are not the most desired piece of software for engineers however, for
companies, they often add value. A good starting point would be acknowledging that
legacy systems have good traits; there are many problems related to legacy systems, but
there are good things in their favor, such as:

•	 Profit: Legacy systems are not hypothetical; they live in production. You might not
like the code, technology, and decisions, but you must admit that legacy systems
are how your company makes money. Why is this trait essential? Whatever you do,
you must drive profits, with real business value and perceived customer impact.

•	 Active Users: Legacy systems in production have users. Having real users doubles
down on the system value, presenting important future opportunities in the sense
of growth. Let’s say your company has a legacy desktop system with 1M users,
now you build a mobile solution, and you have 150k users. The legacy system
presents a user base that can grow to 850k users in the new mobile system. It’s only
possible to have users when we solve a real problem.

•	 Baseline Testing: It’s non-obvious, but there is a testing benefit. Legacy systems
are notorious for having poor coverage or no coverage at all, so you might be

3. Wikipedia definition of legacy system https://en.wikipedia.org/wiki/Legacy_system
4. Next.js by Vercel - Javascript and Typescript web framework https://nextjs.org/

What is Continuous Modernization? 5

wondering how testing can benefit them. When you write or have a new system,
you can compare both systems. You can check how much the new system deviates
from the old one. Yes, you still need to write such tests against the old system, but
you have a baseline for measurements.

•	 It works(-ish): A legacy system wouldn't have survived or had users unless it
did something right. A happy path that delivers value and works consistently. Of
course, surrounded by landmines, but you can learn something from a hardened
process.

Not all legacy systems drive profits, but when that happens, such systems are often called
core business systems. Not all legacy systems have a huge user base and are actively used;
in that case, it’s an opportunity to get rid of them since their profit and usage are low.
Legacy systems deserve some respect; after all, they drive profits by solving real problems
and running in production for many years.

Working with legacy systems
Considering the 90s as a starting point, it was possible to have companies that were not
using software at all. Many of us did not live in such a time as professionals but had
professors and friends talking about when companies were just using paper and process.
Today, all companies have software; unless you have a startup, you always start with
one or many legacy systems. Not only do companies have a software, but they also have
scale; software does not shrink; it just gets bigger. You might be wondering where we are
going with all this. There is no escape from legacy systems. No matter the company you
go to, you will find a legacy system. Therefore, there is also no escape from monoliths and
distributed monoliths.

Legacy systems are the norm, the reality, the default. We need a better approach. Otherwise,
our lives will only get worse. The million-dollar question is how you will approach legacy
systems properly. Continuous Modernization is the way. However, let’s not jump to the
solution yet. Let’s understand the problem a bit more.

Amplifiers
Users want to solve problems and achieve their goals, no matter whether the system is
legacy or not. Companies still need to deliver customer value and good experiences to
users and make a profit. By definition, if the company wants to survive, it needs to keep
involving legacy systems, creating new products that depend on legacy systems either by
creating new features, fixing bugs, or keeping up with compliance. Therefore, there is a
constant need for change in legacy systems. Some factors and social phenomena amplify
problems that legacy systems have, forces and factors like:

•	 Engineering turnover and group fear: Engineers do not like working with legacy
systems, and they quit, creating a turnover problem. Then, you have fewer

