
www.bpbonline.com

Efficiently moving legacy applications and
monoliths to microservices and Kubernetes

Fernando Harris

Cloud Native
Architecture

ii

First Edition 2024

Copyright © BPB Publications, India

ISBN: 978-93-55516-770

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered,
stored and executed in a computer system, but they can not be reproduced by the means of
publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in
this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

 iii

Dedicated to

My parents and sister:
Stella Clarissa Harris Pedro Francisco

Fernando Duarte Pedro Francisco
Carol Miriam Harris Pedro Francisco

and

My wife Paz Ramos and my sons, Sebastián and Fernando

iv

About the Author

Fernando Harris is a Mozambican-Portuguese solution architect based in Spain. Expert
in API management, service-oriented-architectures, event-driven-architectures and
microservices, he supported dozens of organisations implementing Agile and DevOps
best practices to design and implement cloud-native products and modernise existing
legacy systems. He holds an MSc in Information Systems Management from the Technical
University of Lisbon (ISCTE), and a BSc. in Computer Science and Business from the
Polytechnic Institute of Coimbra (ISCAC), both in Portugal.

 v

About the Reviewer

Phil Wilkins has spent over 30 years in the software industry with a breadth of experience
in different businesses and environments, from multinationals to software startups and
consumer organizations. He started as a developer and has worked through technical and
development leadership roles. Today Phil’s interest and focus is on observability, APIs
and cloud technologies and techniques. Phil works for Oracle as a Cloud Architect &
Evangelist.

Phil has authored books on Fluent Bit and Fluentd and co-authoring on API and Integration
development. He has also had several articles published in technical journals and is
an active blogger. When not writing, Phil explores new tech or presents at conferences
physically and virtually around the world - from DeveloperWeek to JAXLondon.

vi

Acknowledgement

Writing this book was a pleasant challenge which I very humbly accepted. Hopefully, it
will be as helpful for the readers as it was for me. I have written it in the good spirit of
open-source communities: to share what I learn.

My first acknowledgment goes to my family, especially my wife Paz for her daily support,
for her infinite patience and encouraging me when I thought about giving up.

Thanks to Phil Wilkins, whose ideas about music are as interesting as his writings about
software engineering. At some point, his technical revision looked like a mentorship
process. His vast experience in real projects and products is impressive. As a veteran book
author, his contributions, suggestions, and amendments were key to finishing the book
and a privilege to have.

Thanks to Gonçalo Alves, an experienced information systems expert, one of my best
friends, and my former colleague who offered valuable insights and opinions on the
presented subjects.

Thanks to Ewan Slater, my colleague, for the timeless discussions around cloud native and
for being the person who almost 8 years ago convinced me to embrace this area.

Thanks to all the authors I have cited, books and articles I have read, blog posts and
websites I consulted and open-source code that I used to explore important concepts.

Finally, I would like to express my gratitude towards the staff at BPB Publications for
the exceptional support and constant encouragement. This mission would have been
impossible without their assistance.

 vii

Preface

This book explains in 9 chapters how to plan, manage, build, and run applications such as
microservices in an agnostic, scalable and highly available cloud native runtime such as
Kubernetes. This is done by effectively applying DevOps principles through the tactical
use of CNCF (Cloud Native Computing Foundation) tools.

It covers cloud native history and the business drivers we must understand to adopt this
paradigm. It sets a pragmatic definition of cloud native, based on five principles: open-
source, container-based loosely coupled systems, ubiquitous integration, operational
benefits, and DevOps adoption. The book also proposes a framework to achieve cloud
native success that starts with a cultural shift and goes through the interaction between
teams, people, ethics, and skills with key organizational processes based on Agile, Scrum,
Domain Driven Design, API first, DevOps, Observability and Chaos Engineering.

This framework presents a deep technical section as well. In it, we explore Kubernetes
architecture, topology and key components which will let us learn how to design, build,
and deploy evolutionary cloud native monoliths and microservices based on the Twelve-
Factor App principles and Kubernetes best practices. The book also covers important
aspects of automating the deployment of cloud native applications with real examples
configured with Jenkins CI/CD pipelines.

A special end chapter is dedicated to Kubernetes security and how to establish a secure
perimeter for the cluster. We will also explore what is needed to define and manage cloud
native applications’ security requirements in build and runtime.

Chapter 1: History and Business Drivers - explaining the business and organizational
needs behind the history of cloud native.

Chapter 2: Five Different Cloud Native Perspectives - explore five angles to understand
cloud native: open source, container-based loosely coupled systems, operational benefits,
ubiquitous integration and DevOps.

Chapter 3: The Cultural Shift Introducing a Framework to Succeed - propose a framework
to help achieve cloud native success. Try to answer why organizations should invest in
cloud native. Explore the cultural change most cloud native successful organizations face
and the need to develop a culture where performance improvements can be measured.

viii

Chapter 4: People: Who is Doing What - study the attributes, which are important on
individual and collective dimensions, and constitute a baseline to build an engaged team.
The importance of ethics in cloud native and how Agile influences individuals and their
interactions when setting up self-organizing and cross-functional teams.

Chapter 5: Processes: How Should We Do It - discuss in detail Scrum and Agile, Domain
driven design, API first, DevOps, Observability and Chaos engineering and their impacts
on the journey for cloud native success.

Chapter 6: Technology: Where Are We Running It - discuss the provisioning of a cloud
native runtime. Define what Kubernetes is, its needs, and what real problems can it solve.
Learning Kubernetes architecture, fundamentals, and key concepts

Chapter 7: Technology: What Are We Building - how a modular monolith - that follows
the Twelve-Factor App principles and is deployed on a runtime like Kubernetes - might
be a valid approach to starting a cloud native project when influenced by the evolutionary
architecture attributes. Discuss modularity and incremental change. Learn how to use
Jenkins with real examples to set up automation for CI/CD.

Chapter 8: Technology: Transition from Monolith to Microservices - discuss microservices
key attributes and anti-patterns. Learn to decide when and how to adopt microservices,
identify the impacts and define pros and cons. Execute a transition from a monolith to
microservices with a real application.

Chapter 9: Technology: Addressing Kubernetes Security - discuss security at the cluster,
pod, and container levels. For each level, address the main concerns and solutions. Learn
how to restrict access to the kube-apiserver, Kubernetes RBAC and leverage existing
enterprise security controls at the cluster limits. Discuss security requirements inside the
cluster in terms of component recommended configurations and communication best
practices. Discuss security at the application level.

 ix

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/3af63c
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Cloud-Native-Architecture.
In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices to en-
sure the accuracy of our content to provide with an indulging reading experience to our
subscribers. Our readers are our mirrors, and we use their inputs to reflect and improve
upon human errors, if any, that may have occurred during the publishing processes in-
volved. To let us maintain the quality and help us reach out to any readers who might be
having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications’
Family.

Did you know that BPB offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.bpbonline.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at :

business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and offers
on BPB books and eBooks.

x

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book’s Discord space
Join the book’s Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

 xi

Table of Contents

 1. History and Business Drivers ... 1

Introduction .. 1
Structure .. 1
Objectives .. 2
Business and organizational drivers ... 2

Enterprise architecture ... 5
Integration architecture .. 5

Cloud-Native and distributed architectures .. 7
History ... 9

Virtualization ... 9
Containers .. 11

Conclusion .. 15
References .. 15

 2. Five Different Cloud Native Perspectives .. 17

Introduction .. 17
Structure .. 17
Objectives .. 18
Open source .. 18

Relationship between cloud native and open source .. 19
CNCF maturity levels .. 20
CNCF landscape ... 21

Container-based loosely coupled systems ... 21
Ubiquitous integration .. 23
Operational benefits ... 24

Availability ... 25
Resiliency.. 25
Scalability ... 26

xii

DevOps adoption ... 28
Conclusion .. 29
References .. 30

 3. The Cultural Shift Introducing a Framework to Succeed .. 33

Introduction .. 33
Structure .. 34
Objectives .. 34
A cultural shift .. 34
Organizational performance .. 36

Cultural change and cloud native performance ... 37
Relative measures of success .. 37

Metric 1 .. 39
Metric 2 .. 40
Metric 3 .. 40
Metric 4 .. 40

Introducing a Framework ... 41
Conclusion .. 43
References .. 44

 4. People: Who is Doing What .. 45

Introduction .. 45
Structure .. 46
Objectives .. 46
Prioritizing ethics ... 47
Embracing agility: A methodology for the people .. 47
Setting up team boundaries .. 48

Team self-dependency ... 49
Team size ... 50
Team skills and composition ... 51

Generic skills .. 52

Cloud native solution architecture skills ... 53

DevOps engineering skills ... 54

 xiii

Cloud native and organizational leadership .. 54
Adding people to the framework .. 55
Conclusion .. 56
References .. 57

 5. Processes: How Should We Do It ... 59

Introduction .. 59
Structure .. 60
Objectives .. 60
Scrum and Agile: A tour of processual impacts ... 61

Feedback, visibility and transparency .. 61
Team autonomy and collective ownership .. 61
Innovation .. 61
Refactoring ... 62
Working in small batches ... 62
Design and development .. 62
Scrum ... 62

Domain driven design ... 64
Change and complexity .. 64
A unified model and a language to describe it .. 64

The need for multiple models to fight enterprise complexity 66

Exploring the model boundaries .. 66

Keeping the system unified .. 67

Communications partnerships ... 67

Customer / supplier .. 67

Shared kernel .. 68

Conformist ... 68

Patterns .. 69

Anti-corruption layer ... 69

Open host service and published language .. 70

Implementation patterns/techniques .. 71

xiv

API first .. 72
APIs and CNCF ... 72
APIs and strategy ... 73
API first .. 73
API lifecycle governance .. 74

DevOps .. 76
DevOps fundamental concepts for cloud native .. 78
Environments and DevOps .. 78
Post deployment decisions .. 79
GitOps .. 80
DevSecOps ... 81
Platform engineering .. 82

Observability .. 82
Chaos engineering ... 84
Adding processes to the framework ... 85
Conclusion .. 86
References .. 87

 6. Technology: Where Are We Running It .. 91

Introduction .. 91
Structure .. 92
Objectives .. 92
Provisioning a cloud native runtime ... 92

Declarative configuration ... 93
Infrastructure as code ... 93
An application baseline: compute, network, and storage ... 94

Container runtime .. 94
Need for a platform to manage containers .. 99

Kubernetes fundamentals ... 100
Master of APIs and abstraction ... 102

First abstraction: Container Runtime Interface .. 102

Second abstraction: Container Network Interface ... 102

 xv

Third abstraction: Container Storage Interface ... 102

Kubernetes key concepts ... 103
Pods: An abstraction to containers .. 103
Kubernetes services .. 108
Kubernetes storage ... 112

StatefulSets .. 121

Understanding Kubernetes architecture .. 121
Worker nodes components .. 126

Adding technology to the framework .. 127
Conclusion .. 128
References .. 129

 7. Technology: What Are We Building .. 131

Introduction .. 131
Structure .. 132
Objectives .. 132
Evolution of cloud native architecture .. 132
An instantiation of evolutionary architecture .. 133

Modularity ... 134
Incremental change... 135
Fitness functions .. 135

Cloud-native monoliths .. 136
Curiosity App: an imaginary business context .. 138
Monolith architecture: modules and layers .. 138
Making the monolith cloud native ... 141
Twelve-Factor App and Kubernetes best practices ... 141

Codebase ... 142

Dependencies .. 143

Config ... 144

Backing services ... 145

Build, release, and run ... 146

Processes ... 148

xvi

Port binding ... 149

Concurrency ... 149

Disposability .. 150

Dev-prod parity .. 151

Logs .. 152

Admin processes ... 153

Running the Curiosity monolith in Kubernetes .. 153
Manual deployment.. 153
Automatic deployment ... 156

Step 1: Make a change in the codebase ... 157

Step 2: Build starts ... 160

Step 3: Deployment starts .. 162

Step 4: Configuration is injected in runtime ... 162

Adding technology to the framework .. 163
Conclusion .. 164
References .. 165

 8. Technology: Transition from Monolith to Microservices .. 167

Introduction .. 167
Structure .. 168
Objectives .. 168
Panacea called microservices ... 169

Adopting microservices .. 170

Microservices pros and cons .. 171

Microservices key attributes .. 173

Impacts to consider .. 174

Architecture concerns .. 177

Curiosity App: Imaginary business context .. 178

Incremental transition: Trade-offs and concessions ... 180

Microservices special requirements .. 189

Playing with Curiosity app microservices ... 199

 xvii

Change the Curiosity backend microservice .. 200

Change the Curiosity frontend microservice ... 202

Adding technology to the framework .. 203
Conclusion .. 204
References .. 205

 9. Technology: Addressing Kubernetes Security .. 207

Introduction .. 207
Structure .. 208
Objectives .. 209
Kubernetes security ... 209
Security at the cluster limits ... 210

Restrict access to the kube-apiserver .. 212
Leverage enterprise security control mechanisms .. 221

Security inside the cluster ... 221
Components security .. 223

Security at the application level ... 224
Statically scanning images ... 225
Least privileged principle ... 225
Disallowing privileged users .. 225
Post-deployment security ... 228
Security and service mesh .. 228

Adding technology to the framework .. 230
Conclusion .. 231
References .. 232

 Index ...233-238

Chapter 1
History and

Business Drivers

Introduction
For the Cloud Native Computing Foundation (CNCF)1 cloud native encompasses all
techniques such as containers, service meshes, microservices, immutable infrastructure and
declarative APIs that enable loosely coupled systems to be resilient, manageable, and observable.
Combined with robust automation they allow engineers to make critical and high-impact changes
frequently and predictably with minimum toil for the business. Despite being a purely technical
definition, it has business and historical reasons behind it. In this first chapter, we will start
by taking a quick look at cloud native history and business drivers and how information
technology evolved to the cloud native paradigm. Understanding the business and
organizational drivers behind the history of cloud native is key to understanding its
definitions and why organizations are becoming cloud native enterprises.

Structure
In this chapter, we are going to discuss the following topics regarding cloud native:

• Business and organizational drivers

• Relationship with distributed architectures

• History: From virtualization to containerization

1 Cloud Native Computing Foundation or CNCF.

2 Cloud Native Architecture

Objectives
In this chapter, you will learn why enterprises are becoming cloud native and the historical,
business, and organizational reasons behind that transformation. You also learn about
the relevance of studying distributed architecture and why cloud native differentiators
are more tangible in that context. Finally, you will learn about the differences between
virtualization and containers and why the latter made possible the advent of cloud native
technology.

Business and organizational drivers
The typical cloud native book will start by telling you what cloud native is. As of today, this
might seem unnecessary. Who does not know what a container is? Or, for what Kubernetes
should be used? Nonetheless, there are many different definitions for cloud native. Some
products or services are sometimes listed as cloud native depending on the context they
are being discussed. In this book, to define a tangible scope for the readers, we will refrain
from judging whether a specific product is cloud native or not and just assume those that
are certified2 by the CNCF as such.

Simplistically, in a cloud native environment, development produces more releases with
minimal toil, and operations get high availability, scalability, and resilience as easy-to-use
commodities. In the end, it is the organization and its information systems that get the
real benefits. In sum, is about speed, agility, and efficiency. Cloud native is not necessarily
about cloud3 (though cloud computing helps a lot), but it is about resources - or perhaps
scarce resources - and how agile is an organization in managing memory, RAM, or storage
to respond to changes in the business needs.

It is a fact that cloud native is helping organizations in the creation of value for their
customers by changing the way products and services are planned, produced, and delivered.
This is effectively achieved by leading a sort of revolution in software development and
operations, facilitated by - an early - adoption of DevOps principles. Effective ways to
successfully do that is what this book is about.

The strategic significance of cloud native for companies is undeniable. In a 2019 survey
of 2500 developers around the world[13], almost half responded that they are training to
develop mission-critical applications with cloud native technology such as microservices,
containers, container orchestration frameworks, and serverless functions for their
companies. Companies that understood the importance to adopt cloud native will present
more probability to keep IT as a source of competitive advantage and will eventually
lead their markets and industries. Companies that fail to understand this will need to
accept the rules dictated by the leading cloud native competitors and find themselves
2 CNCF Landscape [https://landscape.cncf.io/] categorizes all certified CNCF open-source projects in

different technical functions or domains.
3 Cloud native doesn’t need to be in the cloud the same way microservices don’t need to be small or

Serverless doesn’t mean there are no servers involved!

History and Business Drivers 3

at a competitive disadvantage[1]. This applies whether we are talking about start-ups, or
experienced companies already playing a role in their markets and industries4. And the
reason is the demand to have more digital products, services, and operational processes
on the scale required to face competition. Cloud native enterprises are software builders
as opposed to consumers of off-the-shelf software. This transition requires a shift in terms
of cultural, operational, and technical values [13]. It is clear that cloud native is a source of
competitive advantage, and it does that by supporting the company’s value chain in a very
agile way. A company value chain (as depicted in Figure 1.1) is a system of interdependent
activities which are connected by linkages supporting its critical processes to develop
products and services[2]. When these interconnected activities are internal, they represent
linkages between different functions and domains inside the organization. When external
they might represent linkages between the company and providers or linkages between
the company and customers that is, business-to-business (B2B) or business-to-consumers
(B2C)5 commercial relationships:

Figure 1.1: Porter’s linkages and value chain

This value chain is evident when we look at the ERP systems and their history for example.
An enterprise resource planning system or ERP is a software platform supporting the
seamless integration of different business functions and domains - for example, supply
chain, human resources, customer data, accounting and so on - by connecting information
flows using process or data integration to support specific business processes such as hire-
to-retire or order-to-cash[3]. These different functions or modules typically run against
a single database. The ERP promised to cover all functions within the organization’s
different domains. In some way, it succeeded as of today the ERPs still in the market
keep improving and adding functional domains, responding well to internal and external
forces and demands within the organization. However, the modern ERP no longer expects
4 There are many famous examples of this such as Spotify, Netflix, Amazon.
5 Business-to-business (B2B) and business-to-consumer(B2C) are acronyms that represent commercial

activities based on transactions between companies or organizations (B2B), or transactions between
companies and consumers, or individual customers (B2C).

4 Cloud Native Architecture

to respond to all integration needs. External forces such as those generated in a B2B or B2C
context brought different challenges, and a need to learn how to integrate dynamically
with other systems. This need was coming from new constant market demands, different
domain functions with new projects, new services and new products, companies merging
and changes in the relationship between providers and customers (EDI, Just-In-Time).

The space of the ERP was challenged by integration technologies such as EAI or Enterprise
Application Integration. ERPs and EAI descendants still live side by side in the organizations
and the diversity of requirements they brought including the different integration needs
they covered, ultimately helped consolidate distributed architecture as a de facto standard
in many organizations’ integrated systems.[4] We will address distributed architecture and
its close relationship with cloud native technology in more detail in this chapter.

The idea is that an organization’s business changes dictate the evolution of integration
architectures. Mainframes and ERPs fed for a while a dream of homogenous integration
which was soon revealed to be very difficult to achieve. EAI and later SOA or Service-
Oriented-Architecture, came in to solve these limitations by consolidating the principle
of heterogeneous integration, based on “industry-defined open standards” and
interoperability between different applications and systems with multiple components
based on XML, SOAP, and Webservices.

Richards and Ford resumed this phenomenon with a simple and interesting analogy:
“Architecture styles, like art movements, must be understood in the context of the era in which
they evolved”[4]. In the same way Impressionism, Realism or Cubism left their inspiration
on societies, so did the IT “art movements” leave their mark on organizations’ enterprise
architectures. A great example of this is evident in microservice’s many patterns and
principles created for EAI, SOA and Event-Driven Architectures (EDA)[5]. The point is
that any art movement or tech trend is temporary and only some parts and core principles
will survive the initial hype and the test of time. It does not matter what technology or
architecture approach you use to connect these Porter linkages; technology will eventually
become outdated. The focus of the architect should be on how to manage these linkages
and how to manage their inevitable change. We know that the only constant is change
itself, and as architects, we should plan the system and the organization for it[6].

If B2B and B2C were generating a huge demand for change, new patterns such as IOT and
D2C6 are demanding enterprises to do it at an even faster and unprecedented scale. Cloud
native techniques and principles seem to accommodate this constant need to change in
systems and organizations way better than past technology – and at a bigger scale and
higher velocity - as its core attributes have been thought to support, collaborate, and even
instigate business change and digital transformation.

6 D2C stands for Device to Cloud and IOT stand for Internet Of Things, referring to technologies
associated with the connection of devices and machines between them and the cloud.

History and Business Drivers 5

Enterprise architecture
In large organizations, enterprise architecture is a well-known tool to manage complexity
and change. Though its correct application is not always visible, it is a discipline which
is present in many industries. One can use it to understand and build the enterprise itself
by defining what it encompasses in terms of business, information, applications, and
infrastructure scope and how each of these levels and actors relates and behaves when
managing the information flows to support the organization’s strategic goals. Information
Architecture is a critical level or perspective of Enterprise Architecture as it states which
data is fundamental for the organization in terms of business entities and inputs/outputs
for different information flows[7]. In Figure 1.2 we can see these levels, perspectives, actors,
restrictions, boundaries, and models represented. We can also see how it relates in generic
terms with cloud native concepts. Most of these concepts we will address in detail in the
following chapters.

Figure 1.2: Enterprise architecture and cloud native impacts

Integration architecture
Different stakeholders in different domains have different information needs. The
Integration Architecture is an abstraction that represents what is needed to assure that
the above-mentioned information flows circulate between different business domains
and linkages without any siloes or boundaries. It tries to explain and detail these flows
in terms of interoperability needs between different applications and different building
blocks. These applications may be consumer applications, the client services that deliver
information for the end user, provider applications, the business services which receive
requests from the clients and provide responses from the end targets (for example a server,
a database or a Rest API) and brokering applications, the middleware that manages the
relationship between consumers and providers. For TOGAF this foundation is called the
integrated information infrastructure – Reference Model (III-RM)[7] and is part of the
application architecture. The vision portrayed by this reference model can be extremely
valid to understand how the value chain and linkages relate to integration building blocks
inside an organization. Understanding this can be difficult not only because integration
technologies can be complex to master, but also because the organization has its own
“organic” complexity reflected by its communication structure.

The Conway Law7 states that any organization that designs a system (defined broadly) will
produce a design whose structure is a copy of the organization’s communication structure[8]. As
7 James Lewis and Martin Fowler coined a concept called the ‘Inverse Conway Maneuver which

recommends optimizing the team and organizational structure to create some sort of structural parity
between the technology and business architectures to achieve the desired product.[16]

6 Cloud Native Architecture

exemplified in Figure 1.3, the more hierarchical the structure is, the more complicated will
be the integration and the effort to integrate:

Figure 1.3: Organization Structure: A – Hierarchical versus B – Flat

This complexity might help us understand the inherent difficulty in integrating programs
into a system. It was normal to measure software complexity by the number of lines of
code, or other indicators related to the application itself and ignoring the difficulties
related to the need to integrate and make that application communicate with others as
part of a system. Keen and Gambino[9] revisiting Brooks, built important evidence around
the indicator that if X is the effort required to write and test a program, 3X is needed to make it
into a program product and 9X to integrate it into a system product, as depicted in Figure 1.4:

Figure 1.4: Brook’s assessment of relative programming effort [9]

According to these authors, Integrating a program into a system requires substantial testing
of linkages, and often additional code must be written to ensure consistency. Thus, integrating
might take - at least - 9X more effort than building an isolated program. This additional
code to ensure consistency is needed to make sure that the new program fits the existing
system. The existing system, – in theory – translates the organization’s communication
distributed structure with all its complexities. Today, to measure these complexities in
the design phase, we define the different modules’ coupling and cohesion metrics8. These
8 A modular system with high cohesion and low coupling is usually considered to be well designed.

History and Business Drivers 7

indicators will show the degree of interdependence between different modules and the
level of functional cohesion inside each one of them.

Cloud-Native and distributed architectures
It does not matter where you look in terms of integrating linkages and value chains.
Whether the organization structure is flat or hierarchical, or you are considering
developing and connecting an application into new or existing systems or integrating
internal or external linkages, regardless of the technical approach, you will certainly
produce some sort of distributed system to consistently represent the organization’s
communication structure. This has been shown by the evolution of different architectural
styles for distributed systems such as those based on service orientation, event-driven, or
microservices[5], backed by principles such as API First – in which the tactical or strategic
definition of the API comes before everything else as a proper contract to follow between
parties– and techniques such as those based on asynchronous messaging in which the
dependency between producers and subscribers of events is very low, allowing the
integration of loosely coupled components through the utilization of queues and topics.
Though they have key differences and represent different movements, in general, we are
discussing complementary approaches to implementing distributed systems[4]. Simply
put, we can quickly define some common major pros and cons of these architectures.
They are typically hard to test, and integration testing is very challenging. They might
result in complex solutions as they typically address complex use cases. Last, they can
be expensive, whether because you are acquiring an SOA platform made available by a
vendor, or because you will need senior engineers and senior architects in your team to
implement EDA or microservices patterns and you might not always find them available
in the market. To compensate for these disadvantages, this type of architecture can be very
agile. To some extent, the design tends to present more loosely coupled modules which
can give the team managing it more autonomy and less risky decisions to take when
deploying in production. The performance can vary as it is not its strongest attribute. On
the other hand, scalability is probably its best quality. Of course, this list presents a mix of
pros and cons where some of which can be easier to track in microservices than in SOA
for example. Microservices should be always deployed independently and not share the
database while services in SOA are very constrained to achieve the same, not only because
typically services will live in different containers but inside the same application server
and share the same database, but also because they will keep some sort of tight coupling
with the Service Bus9.[7] Despite some key differences, we can in general assume that most
of the pros and cons we mentioned are present in distributed architectures[5] with different
orders of magnitude and importance, as shown in the following figure:

9 It’s possible to have multiple application servers with different services deployed. The Service Bus is
typically a monolith, though cloud native is also changing that.

