Clean
Architecture for

Android

Creating scalable, maintainable and testable
native Android apps

2nd Edition

Eran Boudjnah

www.bpbonline.com

ii

Second Revised and Updated Edition 2026
First Edition 2023

Copyright © BPB Publications, India
ISBN: 978-93-65891-676

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered, stored
and executed in a computer system, but they cannot be reproduced by the means of publication,
photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true and correct to the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but the
publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete E E

BPB Publications Catalogue
Scan the QR Code: E

www.bpbonline.com

iii

Dedicated to

My endlessly supportive wife, Lea

iv

Forewords

There is a point in every Android developer’s journey when the code starts to feel heavier
than it should. The feature is simple, but the implementation drags. A small change in Ul
breaks something in the data. Business rules are scattered. No one is sure what touches
what anymore.

At some point, the joy of building turns into the stress of maintaining.

Thatis usually when people start searching for better architecture. Some end up discovering
Clean Architecture through blog posts or conference talks. Others try to piece it together
through trial, error, and code reviews that go in circles. And many never get the time or
clarity to understand what clean even means in the context of real-world Android apps.

This book is a gift to all of them.

It does not assume you already know Clean Architecture, but it also does not waste your
time if you do. Instead, it offers something rare: a complete, opinionated, and practical
walkthrough of Clean Architecture as it applies to modern Android development. It
embraces tools we actually use—Hilt, Compose, Kotlin DSL—and gently reshapes Uncle
Bob’s core ideas to fit the messy, asynchronous, Google-evolving reality of our day-to-day
work.

The author is not preaching from a pedestal. He is writing from the trenches. With over
two decades of experience behind the keyboard, he has seen what bloats, what breaks, and
what quietly survives release after release. His approach is shaped not just by principles,
but by actual pain, and the relief of finding what works.

This is not a silver bullet. It is better than that.

It is a steady path out of chaos. It is a set of small, conscious decisions that add up to big
clarity. It is architecture that lets you move fast—and keep moving.

Whether you are a developer trying to clean up your first app or a team lead looking for
a sane structure to scale with, this book will not just show you how. It will help you think
differently about what good code actually means.

Read it slowly. Rethink a few things, and maybe next time the code starts to feel heavy, it

will not be because it is broken, but because it is solid.

- Gaurav Thakkar
Mobile applications specialist at BookMyShow

In software engineering, we constantly navigate the tension between immediate delivery
and long-term viability. The initial velocity of a project is often seductive, but without
a solid architectural design, it inevitably gives way to the corrosive effects of software
entropy. As the quote from Norman Foster in the introduction to this book reminds us,
we must design for a future that is essentially unknown. This principle is the very soul of
professional software development.

The journey of our industry in Android development has been a collective search for this
architectural ideal. We evolved from monolithic UI components, where logic and display
were dangerously intertwined, toward more disciplined approaches. We learned to
separate concerns, first by creating orchestrating classes to direct our views, and later by
adopting reactive models to create a seamless flow of data to the UL

This is the critical problem that this second edition of Clean Architecture for Android
solves with such clarity and conviction. It moves beyond transient patterns to advocate for
a set of enduring principles. At its heart is the Dependency Rule, a non-negotiable mandate
that all dependencies must point inward, toward the center of the application. This book
provides the definitive blueprint for building a system around an inviolate Domain layer,
where your pure business logic resides, entirely insulated from the outside world.

Youwilllearn to treat the UI, the database, and the network as what they are: implementation
details. The Data layer becomes a sophisticated adapter, negotiating with external systems
and translating their chaos into the clean, stable language of your Domain. The Presentation
layer becomes a thin servant to this core logic. By enforcing this separation, you build an
application that is not just testable and maintainable, but truly resilient and adaptable.

This book is more than a technical manual; it is a guide to professional practice. It offers
the disciplined framework required to build sophisticated, large-scale applications that
are designed to last. For any developer who considers their work a craft, the principles
within these pages are not just recommended; they are essential.

- Jesus Rodriguez
Senior Android Developer Manager

vi

About the Author

Eran Boudjnah has been developing apps and leading mobile teams for a wide range of
clients, from start-ups (JustEat, Plume Design) to large-scale companies (Sky, HSBC) and
conglomerates since 1997. He has been working with Android since around 2013.

Eranis a developer with almost three decades of experience in developing mobile applications,
websites, desktop applications, and interactive attractions. He is passionate about board games
(with a modest collection of a few hundred games) and has a 90's Transformers collection on
display, of which he’s quite proud.

Eran lives in Brentwood, Essex, in the United Kingdom with Lea, his incredibly supportive
wife.

vii

Acknowledgement

On a personal note, writing a book about Clean Architecture proved to be quite an exciting
journey. It was a great opportunity to challenge ideas and principles. None of it would have
been possible if not for many people who challenged me, learned with me, helped me grow,
and supported me along the way. While I cannot name all of them, I would like to name a few.
If I have not mentioned you, I do apologize. I got help from so many people.

In no particular order, my gratitude goes to Jose Antonio Corbacho, Davide Cirillo, Sébastien
Rouif, Amr Yousef, Tim Hepner, Manroop Singh, Muhamed Avdi¢, and Mahmoud Al-Kammar.

I am thankful to Igor Wojda for reviewing the first edition of this book so thoroughly. It would
not have been as accurate or detailed if not for his invaluable feedback.

I would also like to thank my wife, Lea, who supported me throughout this process, which
was quite demanding at times.

Lastly, thank you for taking the time to read this book. It is my hope that, having read it, you
are now comfortable with Clean Architecture in the Android world. Maybe with your own
ideas and experience, we can keep evolving it and make it ever better.

viii

Preface

I asked him if he’'d come to clean the windows, and he said no, he’d come to demolish the house.
He didn't tell me straight away, of course. Oh no. First, he wiped a couple of windows and
charged me a fiver. Then he told me.

- Douglas Adams

Clean Architecture is not new. It has been around since 2012. Applying it to Android is not a
new idea either, and has been done by many teams over the years.

What is surprising is this: despite Clean Architecture being around for so long, there is still
no definitive source if you want to figure out how to implement it in your project. At the time
of writing, if you searched for one, you would find blog posts, articles, online courses, and a
couple of books, published close to when the first edition of this book was published. Each one
of those sources would suggest a somewhat different approach. All are valid, and I have seen
them all implemented with varying degrees of success. None answered all the questions that
I had when I got to the actual development of real-life projects.

This is a real shame because I could have used such a source. When a client of mine wanted
to merge two of their Android apps into one, it sure would have helped us. Unfortunately, it
was not there, and the merging process ended up dragging on for years. In hindsight, had the
projects adopted Clean Architecture, the process would have been much smoother. We could
have migrated it in parts, feature by feature, layer by layer, and plugged the common code in.
I cannot begin to measure how much time and money could have been saved.

However, there was no definitive source of information for Clean Architecture back then, and
we could not answer the questions that we had in a satisfactory way. We could not get a clear
picture of how that solution would work for us.

We had many questions: what exactly is business logic? Where do I draw the line between
business logic and presentation logic? Just how much responsibility should the UI have? How
do models travel between the layers? How much logic should I have in my Data layer? What
doIdo if the backend work is still in progress? Having this book would have answered all our
questions.

Another client of mine decided to go forward with Clean Architecture despite not having a
clear understanding of the pattern. I cannot blame them for the reason mentioned previously.
They made a good effort. Unfortunately, they also made quite a few mistakes. Unfortunately,
this meant that the code was gradually becoming harder to maintain. Those mistakes alone
were enough to lead them down a path of a full code rewrite. In retrospect, they are happy

ix

with their decision to rewrite the project. They are moving much faster now and scaling rapidly
without having to slow down to onboard new developers. The architecture is self-explanatory,
and all you need to implement a new feature is to look at one of the many other examples in
the code. The test coverage and testing policy provide them with a high level of confidence.

As an Android consultant, I was fortunate enough to work with many skilled developers
from all over the world over the course of over 12 years. Out of the 12 years, I spent six
implementing Clean Architecture. Together with my colleagues, we have iterated, reiterated,
polished, and rewritten our implementation. We had to answer all the questions mentioned
above and many others.

It took four years for me to feel ready to share my understanding of architecture with you. It
took another two to complete this second edition. I hope reading about my experience will
help new developers as well as veterans. I aim for this book to be a resource you could come
back to whenever you are not sure about any part of your architecture.

This book is divided into 15 chapters. We will cover the Clean Architecture principles as
applied to Android and look at an end-to-end implementation. We will continue to explore
testing as well as failures and exceptions. Then, we will demonstrate how to implement a
new feature. Finally, we will discuss migrating existing projects and anything important that
would not fit in any of the earlier sections.

Chapter 1: Introduction- Covers the motivation for writing the book, its key benefits for the
reader, and sets the expectations in terms of how the book is going to be structured. It provides
some background on Clean Architecture and Clean Code before we dive into greater detail.
The first section will provide three real-life examples of where Clean Architecture could have
saved (unnamed) clients from having to rewrite their app due to requirement changes.

Chapter 2: Clean Architecture Principles- This chapter will break down Clean Architecture into
its individual layers as they are applied in the Android world. We will cover the responsibility
of each layer and the components that live in each one.

Chapter 3: The Domain Layer- It is the first of five chapters in which we break down the key
components of each Clean Architecture layer and how they all come together in a working app.
In this chapter, we will discuss the Domain layer and cover usecases, repository interfaces,
and domain models.

Chapter 4: The Presentation Layer- In this chapter, we continue our review of the Clean
Architecture components. We cover viewmodels, presentation models, and bidirectional
mapping between domain and presentation models.

X

Chapter 5: The UI Layer- This chapter follows up from the previous chapter and moves on to
explain the Ul layer. In it, we go over Activities, Fragments, Views, and composables, as well
as Ul models and bidirectional UI to presentation mappers.

Chapter 6: The DataSource and Data Layers- After exploring the architecture from the domain
all the way to the Ul, in this chapter, we go the other way and explore the data side of the
app. We learn about repository implementations, datasources, and finally API and database
dependencies. We will encounter the models that go in the datasource and data models, and
the associated mapping for these models.

Chapter 7: Dependency Injection and Navigation- In this fifth and last chapter breaking
down the Clean Architecture implementation, we cover the different options that we have for
implementing navigation and dependency injection, bringing the different parts of the app
together. We will also demonstrate how navigation can be done in this architecture.

Chapter 8: Unit Testing- We will demonstrate how Clean Architecture makes unit testing
easier. We will start by briefly discussing the value of writing tests. We will then go layer
by layer, discuss the components that can be tested, what needs to be covered by tests, and
provide examples of how those tests look, using Junit 4 and Mockito.

Chapter 9: End-to-end Testing- We will discuss the parts that are harder to test: the Ul and the
integration of all the different parts. We will explain the robot pattern and provide examples
for testing composables.

Chapter 10: Mocking the Server- We will continue covering integration tests and We will
show the basics of mocking web server responses using MockWebServer.

Chapter 11: Failures and Exceptions- This chapter will cover the difference between failures
and exceptions and how both can be handled in Clean Architecture. We will provide an
example of an API timeout exception to demonstrate exceptions and a user not found error to
demonstrate failures.

Chapter 12: Implementing a New Feature- We will demonstrate the implementation of a new
feature in an existing app. We will focus on the best order in which to go about the task and
explain why that order is important following an approach that was proven to work well for
a single developer as well as large teams of developers.

Chapter 13: Dealing with Changes- This chapter is all about changing requirements. In it,
we will see how Clean Architecture rewards us for our efforts by making changes easier. This
chapter will provide two concrete examples: replacing a datasource and updating the user
interface.

Chapter 14: Migrating an Existing Project- In this chapter, we will briefly touch on the common
architectures out there. We will then discuss how a gradual migration can be performed. This

xi

will allow the reader to switch to Clean Architecture without it being a colossal endeavour.
We will provide examples of migrating from MVVM and MVP to Clean Architecture (with
MVVM or MVP) by introducing usecases for new requirements or while working on bug fixes.
We will also show how logic can be moved out of poorly written usecases and into the Data
layer. We will emphasise the importance of tests being in place to protect us from breaking the
existing behaviour.

Chapter 15: Other Bits and Bobs- This is the final chapter. In it, we will mention that Clean
Architecture is a tool. It is there to serve us and help us structure problems, not to tie our
hands. We will remind ourselves that the other tools that we have acquired along our journey
as developers are all still valuable and can still be applied. The SOLID principles, DRY and
KISS are all still valid and should be considered when implementing Clean Architecture.

While this book is by no means gospel, I hope that you will find reading it helps all the pieces
fall into place in your head. Ideally, when you later face a new feature request, you would
easily visualize its implementation details in your mind.

xii

Convention

This book follows a few conventions that are worth mentioning.

Many of the code snippets are incomplete. They highlight parts of the file that are worth
discussing. The complete file as well as the whole project in the context of individual chapters
can be found in the GitHub repository.

References to code are highlighted.
Important terms and library names are bold.
Emphasized words are in italics.
Tips and key takeaways are highlighted like this sentence.

The implementation of Clean Architecture presented in this book is an opinionated one. This
means that in places it may be stricter than the official Clean Architecture model. This choice
is based on accumulated experience from many past projects that I have been involved with
over the years, in which different approaches were explored. You are welcome to stray off the
path laid out in this book, but you will be doing so at your own peril.

Finally, I had to make some technical choices for this book:

e For dependency injection, I chose to use Hilt. This does not mean that you have to use
Hilt, too.

e Asan architectural pattern, I will mostly focus on Model-View-ViewModel (MVVM).

e For Gradle scripts, I will I will be using the Kotlin Domain Specific Language (DSL)
rather than the Groovy one. It was introduced in version 3.0 of the Gradle Build Tool
as far back as August 2016 and has been the default for new builds since 2023.

xiii

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/49cc1f

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Clean-Architecture-for-Android-2nd-Edition
In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the
accuracy of our content to provide an indulging reading experience to our subscribers. Our
readers are our mirrors, and we use their inputs to reflect and improve upon human errors,
if any, that may have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having difficulties due to any
unforeseen errors, please write to us at: errata@bpbonline.com

Your support, suggestions and feedback are highly appreciated by the BPB Publications’
Family.

At www.bpbonline.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on BPB
books and eBooks. You can check our social media handles below:

Instagram Facebook Linkedin YouTube

Get in touch with us at: business@bpbonline.com for more details.

xiv

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings around the world, new
releases, and sessions with the authors:

https://discord.bpbonline.com

X0

Table of Contents

1. INtTOAUCHON ettt ss s s s ss s seasasssesssnesens 1
INErOAUCHON. ... 1
SEUCHUTE. ...t 1
ODJECHIVES ..ttt s 2
History of ANdroid........cceviiiiiiiiiicc e 2
Clean ArchiteCttre OVEIVIEWcccccuiiiiiiiieiiiciectce et 4
Clean Architecture V. MV VM ..ot sesesesssacsens 8
So now I must rewrite My Project.......ccviiiiiiiiiiii e 9
Clean COde ... 10
CONCIUSION. ...ttt 11
PoINts t0 TEMEMDETc.ccoiiiiiiiiiiiiiiiii e 12

2. Clean Architecture PrNCiples ... 13
INEFOAUCHON. ... 13
SEUCHUTC. ..ottt 14
ODJECHIVES .. 14
The application and its role in architectureccocceviiiiiiicinnicriccrcccceens 14
The layers of Clean Architecture implementation.............ccccceucurieiniunicinicininicinicnnes 16

The DOMAIT LAYEToveeiiiiiiiicicicicictcc e 16
The Presentation [AYer............cccovvveucueieieisiiiiiiiicicicieie ettt 19
THe ULLAYET ..ottt 25
THe DAL LAYET ...t 27
The DataSource LAYETccovoviiiiiiiiiiciiiiiiiiicicic e 29
NAVIZATION ...vieiii s 31
CONCIUSION. ...ttt 34
PoINts t0 TEMEMDETc.ccoiiiiiiiiiiiiiiiii e 34

3. The Domain LaYercviivnriinniisnsiiniiniisnisiisnsiissisisiimsisssssssssssssasssssssssess 35
INEFOAUCHON. ... 35
SEUCHUTC. ..ttt 36
ODJECHIVES .. 36

A brief introduction to the Domain 1ayerccccvceiiiniicniiercceceeceeeens 36

xvi

The Domain architecture COe........coominimmiiniiriiietiieieeeceteee ettt 36
The Domain featture COAE ..ottt s bbb sans 41
CONCIUSION ...ttt ettt ettt et et et et e s teebeeteebeesseseessessassansassessaesasseessessensansansanes 47
POINtS 10 TEMEMIDET ...ttt ettt sttt nes 47
4. The Presentation LAYer ... iiiiininniiiinciincinininienseenssesssssessssssssssssesssssssssssesens 49
INETOAUCHON. ..ottt ettt et ettt be s be st e ese e st e e ensensensenes 49
SETUCEUT . ..ottt ettt ettt e et e s et et e e te et e ssaesseesseentesssasseenseensesssenseensenns 49
ODJECHIVS ..ottt 50
The Presentation Jayer ..o 50
The Presentation architecture COAe........uouiiimiininiinieeiieeereeee e 50
The Presentation feattire COAe ..ottt 55
CONCIUSION ..ttt ettt ettt ettt ste et e st et e st e b et e tesbessasseeseeneensensensansanes 63
POINS 10 TEMEMIDET ...ttt ettt sae e beeseeseess e s e s ensanes 63
LT T O O) T 65
INETOAUCHON. ...ttt ettt ettt et e b s e b e besbessasseeseeseessessansansanes 65
SEIUCEUTE. .. ettt ettt ettt et et et e st e et e e be s st e st e st e st e s b ensentessessessesneensensensensensanes 65
ODJECHIVES .. 66
ROIE Of the ULTAYETcccviiiiiiiciiiciciiciceicecee e eens 66
The UL architecttre COAEcivimiiiirieiicicieeieteeeeeeeee ettt sans 66
UL £EALUTE COAR...cuuiuiriieiieieieieseeeet ettt ettt ettt et et e st e tesbesaesbesseeneene et ensensenes 72
CONCIUSION ...ttt ettt ettt ettt e st et e st e ebeebeeseeseeseessessassansassessaesassseseessessansensanes 85
POINtS 10 TEMEMIDET ...ttt st sttt ee s 86
6. The DataSource and Data Layers......cniicvenineiniieninnncincenssnnsensssessssessssessns 87
INETOAUCHON. ..ottt ettt et ettt be s be st e ese e st e e ensensensenes 87
SETUCEUT . ..ottt ettt ettt et e s et et e e te et e saaesbeesseentesssanseensesnsesnsesseensenns 87
ODJECHIVS ..ottt 88
The DataSource Layercccuiuiiiiciiiiiiiiciiicici s 88
The DataSource architeCtire COAEovvvrumneniiisiisiisieieieiesiesiese sttt eteteieiesieniens 88
The DataSource implementation COAe...........ooovvmmennieiiiiiiiicieeeeeecccee e 89
The Data Jayer.......ccuvuiiiiiiiiceec s 96
CONCIUSION . ..tititietteeieiietetetest ettt ettt et et et et e e beeseese e st essessessessassassesseesaeseessessassansensansas 101

o N LRI Lo I =) 0 1110 01 o)< o RRRRR 101

7. Dependency Injection and Navigation..........iieniienniiinnncenniniencneeeene 103
INtrOAUCHON. ..o 103
SEIUCHUTE. ... 104
ODJECHIVES ..t 104
Overview of the app module..........c.cccuviiiviiiiniiiiiiicc s 104
Implementing and arranging the DI SOIUtONc.coveuiiiciiiniciiicccccceee 104
Implementing NaVIGation...........cccuiiiiiiiiniicc 108
CONCIUSION.....eeiiiiiiiiicc st 114
Points to TeMEMDETccouiiiiiiiiiiiiiiii s 114

8. UNit TSN ecuueuriiiiiitiiiicititiitetcniecns s ssssssessssssessssessesssessessssessessaseans 115
INErOAUCHON. .. 115
SEIUCHUTE. ..ot 115
ODJECHIVES ...ttt 116
The value Of UNIt tESES......c.cviuiiiiieiiiiciicccee e 116
Testing the DOmMain Iayerccccciiiiiiiiniiiicic s 117
Testing the Presentation Jayer...........cccoieiiiiciiiieiiiieeccecceceece e 122
Testing the Data layer ..o s 135
Testing the DataSource Layer ..o 144
The fallacy of test coverage confidence............ccccuuuiuvicinininiiniciniciisicsecceeaes 148
CONCIUSION.....eiiiiiiiiiic st 149
Points to TeMEMDETc.ccouiuiiiiiiiiiiiiii s 149

9. End-to-end TeStiNgGccocvvriirnriirenriininiinnisiinisiinisiesnisiissiemssssesssssssssssesssssssssssssssssssssens 151
INErOAUCHON. .. 151
SEIUCHUTE. ..ot 152
ODJECHIVES ...t 152
The value of end-to-end eSSc.cccciiiiieiiiiciicic e 152
The rObOt PALtEIT.......cucviiiiiiiiiiiicic e 153
Testing the home SCreen ..o 156
CONCIUSION. ...ttt 168
Points to remMemDbETc.couiiiiiiiiiiiic s 168

10. MOCKING the SEIVeT.....iiiiiiiiiiieiitciictsseessssessesessesessssessssssessanens 169

J g N0 Yo L el Lo) o WORRE SRR 169

xviii

SEUCHUTE. ...t s 169
ODJECHIVES ...ttt 170
Reasons t0 MOCK the SEIVET.........cccvciiciriicece e 170
MOCKING the SEIVET.........ciiiiiiiicic e 171
Using MOCKWEDSEIVETcooviviiiiiicicicii s 179
Stubbing a Ktor clientccoooiiiiiiii s 184
CONCIUSION. ...ttt 186
Points to TeMEMDETcooviiiiiiiiicc e 186
11. Failures and EXCEPLIONScueeeeireiniiiintieiinniincnnicnneseisssssssssessssessssssssssssesssssssansns 187
INErOAUCHON. ... 187
SEUCHUTE. ...t 187
ODJECHIVES ...ttt 188
Failures o1 @XCePIONSccuiviiiiiiiicicicic s 188
Handling failures............cooiiiiiiiiicc e 189
Handling eXceptionsccceiiiiiiiiiciciiccc s 194
CONCIUSION. ...ttt 196
Points t0 TEMEMDETccoiiiiiiiiiiiiiiiiii i 196
12. Implementing @ NeW FEatUure ... 197
INErOAUCHON. ... 197
SEIUCKUTE. ..o 198
ODJECHIVES ..o 198
The definition of @ fEAtUTEccceviiieiiicicc e 198
THE TEQUITEIMENE ...t 199
Starting with the Domain layer ..o 199
Implementing the Presentation layerccccociiiiiiiiciniciinicisccceccceieeaes 202
Implementing the ULIayer..........ccooiiiiiiiiiniiiiiciiceceeccee e 206
Implementing the Data and DataSource layers...........cccccocuviiiviinicininincnicinicicicenes 209
Implementing Navigation...........cccciiiiiiiiniiii s 212
CONCIUSION. ...ttt 218
Points to TeMEMDETcccviiiiiiiiiii e 218
13. Dealing With Changes........ieiiiiiniieininiciiissesesssseessssssssessssssnsns 219

| gk oo R0 et [o) o FORRRRE SRR 219

SEIUCKUTE. ..o 219
ODJECHIVES ...ttt 220
Dealing with changes..........ccccociic s 220
Changing a dataSOUICEc.c.oviuuiiiieiiiicieieeee e 221
Changing the user interface............ccocuoiuiiciniiiiiiiciiicc s 227
CONCIUSION. ...ttt 231
Points tO reMEeMDETccuiiiiiiiiiccc s 231
14. Migrating an Existing Project ... 233
INErOAUCHON. ... s 233
SEIUCKUTE. ..ot 233
ODJECHIVES ..o 234
EXiSting architeCtures............ceuiviiiiiiiiciiiicicce e 234
Gradual migration from MVPccooiiiiiiic s 235
Gradual migration from MVVM. ... 239
Revisiting existing implementationscccooviriiennniiic e 243
CONCIUSION. ...ttt 245
Points tO reMEeMDETccuiiiiiiiicccc s 246
15. Other Bits and Bobs.......itetttteen s ssesesens 247
INErOAUCHON. ... s 247
SEIUCKUTE. ..o 247
ODJECHIVES ..o 248
Incidental and accidental duplicationccccciiiiiiiinininiiiiic, 248
Long-running Operationscccoueuiiiiiiiiiiciic e 249
Sharing models across 1ayers...........cccccviiririiiriniciiieerceecese e 250
Flattening and sanitizing data structuresccccocoeeeniiiiiiiicccccce 251
Handling permiSsionsccccucuiiiiiiiiiiiicccc e 253
Cross-platform inSights ..o 254
Software engineering best practices ... 255
CONCIUSION ...ovvic s 256
Points to TeMEMDETcccviiiiiiiiiii e 256
Appendix XML and VIEWSiiniiinncniisnicnnissssesssisesssssssmssssssssssssssssss 257

BaSE CLASSESveiieeiie ettt e e et e et e e et e e s aae e s ettt e e eareeeennes 258

XX

End-to-end teSting........ccceeuiiiiiiiiiiiiicccc s 262
CONCIUSION. ...ttt 264
0T - «.265-267

CHAPTER 1
Introduction

As an architect, you design for the present, with an awareness of the past for a future which
is essentially unknown.

- Norman Foster

Introduction

Before we dive into concrete examples and code, we should have a bit of background. In this
chapter, we will learn about the history of the Android operating system, have an overview
of Clean Architecture, and compare it to Model-View-ViewModel (MVVM). Finally, we
will discuss migrating existing projects to Clean Architecture and touch on the importance of
Clean Code.

Structure

In this chapter, we will cover the following topics:
e History of Android
e Clean Architecture overview
e Clean Architecture vs. MVVM
¢ Sonow I must rewrite my project

e (lean Code

2 Clean Architecture for Android

Objectives

By the end of this chapter, readers will have a general idea of what Clean Architecture is.
Readers should also have a rough idea about how Clean Architecture could be introduced into
existing projects. Lastly, I will share with you my view on code quality and how it affects the
final product.

History of Android

Android is quite a mature platform and was unveiled in November 2007. The first device
running on Android was the HTC Dream, shown in Figure 1.1, which was launched in
September 2008. Ever since Android came out, there have been Android developers. In the
early days, no architecture dominated the Android market. It was quite often that you would
find massive Activity god classes holding the entire logic of the app.

B 14:31
1112 TN

0666666606006

06600066006
G00666060666
Co6e60006cD

11000 ER 800

Figure 1.1: The HTC Dream

It did not take long until we all started realizing that this would not work. As soon as apps
had any complexity to them, it became impossible to maintain or scale the code. Writing tests
was a nightmare.

The first architecture to take the Android world by storm was Model-View-Presenter (MVP),
illustrated in Figure 1.2. It gave us some structure. Code did nothave to live inside the Activity
anymore. We started having components with clear responsibilities. Our business logic would
go in the presenter, along with the presentation logic. We could unit-test the presenter. Some
implementations moved the business logic to the model. The Activity, Fragment, and
custom View classes (Android View, not MVP View) would implement MVP-view interfaces,
which the presenter used to drive our Android UI classes. The model used Retrofit services
and database interfaces to access data. Only now, the presenter was getting bloated, and so
were the view interfaces.

Introduction 3

UPDATE W USER ACTIonS

| v

PRESEMTER

Mo DEL CHANMGED UPDATE MoDEL

MoDEL

Figure 1.2: Model-View-Presenter

Along came Google’s Architecture components, making our lives a bit easier. The great
migration from MVP to Model-View-ViewModel (MVVM), which is illustrated in Figure 1.3,
began. Around mid-2017, if you were brave enough, you could have picked up the library,
still in Alpha at the time. By November that year, you could have started using the first stable
release. We got the lifecycle-aware ViewModel class (with its own host of issues). LiveData
made observing the viewmodel reasonably straightforward. Unit-testing the viewmodel was
also easy enough. However, viewmodels did not solve all our problems. They could still get
incredibly bloated, carry way too much responsibility, and hold too much code.

VEEW
\4
VEw Mo DEL
HoDEL CHAMVGED UPDATE MoDEL
I !
Mo DEL

Figure 1.3: Model-View-ViewModel

4 Clean Architecture for Android

It was not all bad. Not all architectures suffered from bloated presenters and viewmodels,
some started adopting Clean Architecture to varying degrees. Some projects had repositories
abstracting the different datasources for the presenters and viewmodels. Some even had
usecases, connecting presenters and viewmodels to repositories.

This is not all that surprising, because Clean Architecture has been around since 2012, long
before the great migration to MVVM, and only about three years after the earliest versions of
Android were out.

Clean Architecture overview

Before going into what Clean Architecture is, let us first go over what a system architecture
(the system being an application, in our case) is and why we need one.

An application, even the simplest one, has a few responsibilities. It needs to:
e Present the user with information.

e Collect input from the user, whether it is via taps, gestures, keyboard typing, or even
voice commands.

e Process the input and perform actions based on that input.
e Quite frequently, it needs to send or retrieve data to or from a remote server or device.

Most applications have more responsibilities than that, and very few do not have all of
them. Broadly speaking, it is possible to break down almost all applications into multiple
responsibilities.

There are several reasons for us wanting to break down our application by responsibilities:
o Testability: We want to be able to test the different parts of the app in isolation.

¢ Ul independence: We want to be able to change our Ul without affecting the rest of
the app.

¢ Consistency: When we or another developer approaches the code, having a consistent
structure helps us understand the code and even predict it.

e Maintainability: This is tied to consistency. Consistent code is predictable and easier
to work with. Generally, the fewer surprises you find in the code, the easier it is to
maintain.

However, not all architectures are equal, and not all are fit for every purpose. This is crucial
because it can be very hard to move away from many architectures once they are implemented.

This is where Clean Architecture shines. So, what is Clean Architecture, exactly?

On the surface, it is another system architecture. It is highly scalable and very easy to maintain.
Since nothing comes for free, this comes at the cost of some initial writing overhead. However,
that initial cost is easily paid back tenfold when you have maintainable and scalable code. It

Introduction 5

is an established understanding that the ratio between reading and writing code leans heavily
in favor of reading.

While implementing Clean Architecture, I learned something new about it. It is more than
just architecture. It is a philosophy. Once adopted, it changes your way of thinking about
applications and feature implementation. While I know that the saying is if all you have is a
hammer, everything looks like a nail, that situation does not describe a problem where your tool
is a Swiss army knife. Clean Architecture really does solve a lot of problems quite intuitively.

Enough theory, though. Let us take a look at how Clean Architecture looks. I have borrowed
the following diagram from Robert C. Martin (Uncle Bob)'s blog’. I modified it slightly to better
reflect our use of it when developing Android apps. The same is illustrated in Figure 1.4:

COMPoSABLES

USE CASES

DoMAW Mo DELS

et
REPOSITORY
_inferfaces

REPOSITORY
'\mPlemer\’raﬂon ~

DATASCURCES

Figure 1.4: Clean Architecture (Android)

On the outermost circle, we can see the representation of two layers: the Ul layer and the Data
layer. This circle includes Activity and Fragment classes and composable functions, as well as
concrete repositories. The next circle, holding viewmodels and presenters, is the Presentation
layer. The repositories are in this circle too, representing the Data layer. The innermost circle
represents our Domain layer, where usecases and Domain models reside.

Note that the arrows are pointing inwards. They represent what Uncle Bob refers to as The
Dependency Rule. You can read these arrows as knows about. So, for example, Activity classes
know about viewmodel ones. Viewmodel classes, in turn, know about usecase ones. The
opposite is not true: viewmodel classes do not know about Activity ones, and usecase classes
do not know about viewmodels ones.

1 You can find the original blog post here: https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-
architecture.html

6 Clean Architecture for Android

You may have noticed that the datasource classes are placed outside of the circles. This is
because they represent external dependencies, and in that sense are exceptional. They follow
a reversed Dependency Rule, as we will see shortly.

Think of the circles as protective layers. Changes are most often driven by the outer layers:
the API we rely on changes. Our design requirements change. Even the Android software
development kit (SDK) changes. The layer separation makes our usecases very stable and
less likely to change as a result. The circles also represent levels of abstraction. The outside
circle is highly technical, while the innermost one represents intentions and ideas, the business
logic.

Another way of looking at Clean Architecture is to take a vertical slice, see Figure 1.5:

~
AcTwimES
FRAGHELTS
COMPOSABLES
\
d ™
VEWHODELS
PRESENTERS
A J
\ 4
Ve
USECASES
REPOSITORY intecfaces
g A

A

7)
REPOSITORY implermentations

G
A 4
-
DATASCURCES
L
A 4
-
NETWORK
DATA SToRAGE
PERMISSIORS
\

Figure 1.5: Clean Architecture vertical slice

Looking at a vertical slice, we can see how the different components come together. This would
be a good representation of a common feature. Remember, the arrows represent dependencies.
They do not represent how data flows. Data can flow in both directions.

Introduction 7

Note the dashed line between the repository implementations and the datasources. Itis there to
emphasize the exception to the Dependency Rule. Since datasources are not tied to particular
features, it makes no sense for them to know about concrete repositories. It is also reasonable
for us to think about them as external to a feature, and thus to the architecture circles. In actual
code, we will see that concrete repository classes depend on datasource ones.

A quick word about layers: layers can take different forms. A layer can be a package in your
project. It can be a Gradle module. In fact, it can also be multiple Gradle modules, each
representing a part of a layer for a particular feature. In this book, we will have all layers per
feature, and they will be contained in a Gradle module per layer per feature.

Let us look at an example. Let us say that we have a composable function with a button (see
Figure 1.6). Let us also assume that we are using MVVM, and so we have a viewmodel class.
When the user taps the button, the composable communicates that tap to the viewmodel. The
viewmodel calls the execute function of a usecase object that describes that event. Let us say
that the usecase class is called UpdateUserLastTapTimeUseCase. That usecase object then
calls a function on the repository object. We can call it updateUserLastTapTime(). In turn,
that function can trigger the storage of the current time in local storage or the cloud via a
datasource object.

Data Flow Degendency Flow
r R
COMPOSABLE WITH COMPOSABLE WITH
BUTTon BuTTon
L J
onTagfction MAGE LoADER
y
N g)
VEEWHODEL VIEWHO DEL
J \ J
A
execute success calback

UpdateUserlastTap Time UpdateUserlastTap Time
USECASE USECASE
LastTapTime LastTapTime
REPOSITORY Interface REPOSITORY Interface

) \ %/ 7y
sovelastTepTime resut
g (7
LastTepTime LastTapTime
REPOSITORY REPOSITORY
Implementation Implementation
| .
L
s3velastTapTime cesut Dooodooooooobdphooooodoooooao
A 4
7 (
LastTapTime LastTapTime
DATASOURCE DATASOURCE
A &

gersist daval Tramrn when done. 1

Figure 1.6: An example of Clean Architecture data and dependency flows

8 Clean Architecture for Android

The repository can then inform the usecase that it was successful (or that it failed), and the
usecase can report that result to the viewmodel. The viewmodel would update its ViewState
field, triggering an update to the composable.

However, wait, I hear you say. You said that the usecase does not know about the repository.
How can the usecase make that call to the repository? To respect the Dependency Rule, we
apply dependency inversion. Dependency inversion is one of the SOLID principles® Instead
of having usecases depend on concrete repository classes, we introduce repository interfaces.
The repository interface will reside alongside the usecase class. Its concrete implementation,
however, will live elsewhere. Now, the usecase class no longer relies on the repository
implementation. This allows us to cross boundaries without violating the Dependency Rule.

This, in short, is what Clean Architecture is all about. Slice your app into layers, protect the
business logic, and embrace change in the outer layers. In the following chapters, we will
explore how this is done and what the benefits are.

Clean Architecture vs. MVVM

So, you already have an app developed. You followed Google’s advice and have implemented
MVVM. You have viewmodels. Your composable functions and Fragment and Activity
classes are your views. Your viewmodels are probably quite large and communicate with
repository objects directly. Maybe you even have usecases (or interactors, which are an
alternative name to usecases). Does adopting Clean Architecture, as suggested in this book,
mean that you have to say goodbye to MVVM? The short answer is no.

The long answer is that the two do not contradict. You can adopt Clean Architecture with
MVVM as well as with MVP. The reason that these architectures can co-exist is that they
overlap. An exception to this is Google’s architecture, which contradicts Clean Architecture
when it comes to the Dependency Rule and considers usecases to be optional.

If we break down MVVM into its components, we can see how the overlap works. The model
moves to the Data layer. The viewmodel stays in what becomes the Presentation layer. The
view moves to the Ul layer. The only change we need to make is to introduce usecases between
the viewmodel classes and the model if we do not have those yet. The usecases become our
Domain layer. This is demonstrated in Figure 1.7 (refer to Figure 1.3 earlier in the chapter to see
how the architecture looked before the change):

2 See here: https://en.wikipedia.org/wiki/SOLID

