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Preface

We are living in the age of intelligent collaboration, where Al is no longer just a tool, but a
partner capable of retrieving knowledge, generating ideas, reasoning through problems, and
interacting across modalities like text, images, and voice. The emergence of multimodal and
agentic applications marks a turning point in how we build, deploy, and rely on Al

This book, Building Multimodal Generative Al and Agentic Applications, is a practical guide for
those who want to move beyond theory and actually build the future of Al systems. Across
18 chapters, you will move step-by-step from fundamentals to advanced implementations,
starting with retrieval, generation, and orchestration; progressing into multimodal workflows
that combine text, images, and voice; and then advancing toward real-world applications like
text-to-SQL systems, OCR, fraud detection, and Al operations.

Every chapter is designed to be hands-on and approachable. You will find conceptual
explanations, system design principles, code walkthroughs, and to do exercises that push you
to experiment and learn by doing.

The goal of this book is not only to explain how these systems work, but also to empower you
to build your own scalable, multimodal, and agentic Al applications, applications that are
reliable, safe, and impactful.

Whether you are an engineer, researcher, or leader in technology, I hope that this book equips
you with the knowledge, confidence, and inspiration to shape the next-generation of Al.

Chapter 1: Introducing New Age Generative Al - This chapter introduces the key building
blocks of modern Al systems. It begins with an overview of generative Al and then explores
retrieval systems, generation systems, and the strengths of each. It covers how retrieval-
augumented generation (RAG) generation combines the two, and how orchestration helps
different AI components work together. The chapter also explains tokens, vector databases,
and reranking methods, along with the differences between bi-encoders and cross-encoders.
Finally, it discusses essential topics like guardrails for safe Al use, the role of agents, and the
importance of Model Context Protocols.

Chapter 2: Deep Dive into Multimodal Systems - This chapter focuses on vision-language
models and their role in multimodal Al It explains what vision-language models are,
compares different implementation approaches, and explores how they differ from broader
multimodal GenAlI systems. The chapter also looks at vision-language models in more depth
and introduces ways to classify multimodal systems based on their outputs.
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Chapter 3: Implementing Unimodal Local GenAI System - This chapter explores the practical
side of building GenAl systems. It begins with the role of GPUs in today’s Al landscape and
how to make use of a local GPU. The chapter then introduces Ollama, including how to
generate a PDF document with it. Moving forward, it explains how RAG works, along with
the key challenges involved in implementing RAG effectively.

Chapter 4: Implementing Unimodal API-based GenAl Systems - This chapter provides a
hands-on introduction to working with OpenAI’s APIs and models. It explains how to move
from using OpenAl for basic tasks to building more advanced agentic Al solutions. You will
learn how to perform multi-document queries, implement a modular retrieval-augmented
generation system using OpenAl and Faiss, and explore a set of to do steps for extending these
capabilities further.

Chapter 5: Implementing Agentic GenAl Systems with Human-in-the-loop - This chapter
focuses on designing and advancing agentic generative Al systems. It starts with principles of
architecting such systems and then walks through an end-to-end human-in-the-loop (HITL)
RAG workflow. From there, it explores how HITL setups can evolve into multi-agent HITL
RAG systems. The chapter concludes by clarifying the differences between agentic Al and Al
agents, highlighting their distinct roles and applications..

Chapter 6: Two and Multi-stage GenAl Systems - This chapter provides a deep understanding
of the concepts of interactions within dense retrieval systems and their importance in RAG.
It explains the role of interaction models in two-stage RAG systems and compares different
reranking strategies, including late interaction, full interaction, and multi-vector models.
The chapter then introduces two-stage and multi-stage RAG architectures, discusses grading
mechanisms for evaluating retrieved results, and demonstrates how to implement a multi-
stage RAG workflow with routing for more accurate and efficient responses.

Chapter 7: Building a Bidirectional Multimodal Retrieval System -This chapter introduces
multimodal systems and how they can be classified based on their outputs. It then explains
the working of a multimodal retrieval system and provides a code implementation with step-
by-step explanation. The chapter closes with a to do section, giving readers practical exercises
to apply and deepen their understanding.

Chapter 8: Building a Multimodal RAG System - This chapter focuses on practical approaches
to generation and evaluation using LLMs. It begins with the implementation of generation
techniques, followed by an introduction to the concept of LLM-as-a-judge and its application
in building recommender systems. The chapter also covers how to incorporate grading
mechanisms with OpenAl to improve evaluation. It concludes with a to do section, giving
readers exercises to apply these ideas in practice.
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Chapter 9: Building GenAlI Systems with Reranking - This chapter explores the concept
of reranking and its critical role in improving retrieval and RAG systems. It explains how
reranking is applied in both text-based and multimodal contexts, with a focus on using cross-
encoders in multimodal RAG. The chapter also introduces the cross-encoder architecture in
multimodal settings and the idea of multi-index embedding within RAG systems. Alongside
these concepts, it provides a code implementation with detailed explanation and concludes
with a to do section to help readers practice and solidify their understanding.

Chapter 10: Retrieval Optimization for Multimodal GenAlI - This chapter examines how to
make retrieval systems more efficient and effective. It begins by outlining common drawbacks of
retrieval systems, then introduces various optimization techniques to address these limitations.
The chapter also explores retrieval optimization in detail, showing how these methods can be
applied to improve performance. It then shifts focus to multimodal RAG systems, explaining
how adaptive index refresh can enhance their accuracy and responsiveness. Finally, it provides
a to do section with exercises for readers to apply these ideas in practice.

Chapter 11: Building Multimodal GenAl Systems with Voice as Input - This chapter explores
how RAG extends beyond just image and text. It introduces the core concepts of expanding
RAG to other modalities and shows how speech interfaces can be integrated into the RAG
architecture. The chapter also provides a step-by-step code implementation of a voice-enabled
RAG system, demonstrating how to bring these ideas into practice.

Chapter 12: Advanced Multimodal GenAlI Systems - This chapter highlights the importance
of reasoning in GenAl systems. It explains the different types of reasoning used in GenAl and
why they matter for building more reliable and intelligent models. The chapter also introduces
key benchmarks that are used to evaluate reasoning capabilities in Al systems.

Chapter 13: Advanced Multimodal GenAlI Systems Implementation - This chapter focuses
on how reasoning can be enhanced in GenAlI through effective prompting techniques. It then
explores specialized architectures that bring reasoning into play at different stages—first
during reranking, where results are refined, and then at the recommendation stage, where
reasoning helps deliver more accurate and context-aware suggestions.

Chapter 14: Building Text-to-SQL Systems - This chapter delves into the complexities of
text-to-SQL and why it is considered a challenging problem. It begins by explaining the basic
concepts and then explores real-world applications where text-to-SQL can make a significant
impact. The chapter discusses the key challenges involved, followed by practical guidance on
designing an effective text-to-SQL system. It also covers entity extraction using large language
models, highlighting how this integrates with text-to-SQL to improve performance. Finally,
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the chapter emphasizes how such systems can enhance data accessibility and literacy, while
also introducing performance metrics and best practices to ensure reliability.

Chapter 15: Agentic Text-to-SQL Systems and Architecture Decision-Making - This chapter
presents the design and implementation of an agentic text-to-SQL system tailored for real-time
retail intelligence. It explains the system’s architecture in detail, along with code walkthroughs
for better understanding. A step-by-step pipeline is provided to show how the system
processes queries, leading to meaningful outputs. The chapter concludes by demonstrating
the actual results generated by the text-to-SQL system and how they address the original
problem statement.

Chapter 16: GenAl for Extracting Text from Images - This chapter introduces three different
approaches to applying GenAl for optical character recognition. It explains how OCR works
on images, as well as how it can be extended to multimodal documents that combine text,
images, and other elements. The chapter concludes with a to do section, giving readers
practical exercises to apply and reinforce what they have learned.

Chapter 17: Integrating Traditional AI/ML into GenAI Workflow - This chapter explores
how traditional machine learning models can be integrated into GenAI workflows through
a detailed case study. It presents a practical use case of hybrid ensemble learning for telecom
fraud detection, showing how models like XGBoost can be wrapped and enhanced within an
LLM-powered system. The chapter also provides a comparative overview of different ways
ML models can be combined with GenAlI to create hybrid solutions. It concludes with a to do
section, offering readers hands-on activities to deepen their understanding.

Chapter 18: LLM Operations and GenAlI Evaluation Techniques - This chapter highlights the
importance of operations in building and running production-grade GenAlI applications. It
compares evaluation methods for LLMs and RAG systems, introduces the concept of RagOps,
and emphasizes the need for continuous monitoring and observability platforms. The chapter
also explores how graph-enhanced RAG can improve recommendation systems and provides
a comparison of different Ops practices in modern software development. Finally, it offers
practical guidance on setting up MLflow for managing experiments and deployments.
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CHAPTER 1

Introducing New Age
Generative Al

Introduction

This chapter sets the stage for mastering new age generative AI (GenAl) systems by introducing
essential concepts and foundational technologies. We begin by exploring the difference between
retrieval systems and generation systems, followed by an in-depth look at vector databases,
search algorithms, embedding techniques, indexing, and reranking, all critical for building
intelligent, efficient Al solutions. Key reliability mechanisms, such as reflection and guardrails,
are discussed to ensure outputs remain robust and aligned with user intent.

We then dive into advanced prompting methods like chain of thought (CoT) to guide Al
models through structured reasoning processes. Moving into agentic Al, the chapter covers
agents, tools, reasoning, planning, and action execution, expanding into the design of multi-
agent systems capable of complex, collaborative tasks. A comparative overview of large
language models (LLMs), large vision models (LVMs), and emerging large action models
(LAMs) is provided, along with practical insights into local model deployment and graphics
processing unit (GPU) infrastructure planning.

Further, we introduce speech technologies, including automated speech recognition (ASR) and
generation, and explain the critical role of memory management in agent-based architectures.
Finally, we present industry standards like Model Context Protocol (MCP) and differentiate
the evolving responsibilities of a GenAl developer vs. a GenAl engineer, preparing readers for
advanced system design.



2 Building Multimodal Generative Al and Agentic Applications

Structure

This chapter covers the following topics:
e Opverview of generative Al
e Retrieval system
e Generation systems
¢ Understanding where generation systems excel
e Retrieval-augmented generation
¢ Orchestration in Al systems
e Tokens in Al systems
e Vector database
e Reranking
e Bi-encoders vs. cross-encoders
e Guardrails
e Agents
e Model Context Protocols

Objectives

This chapter aims to equip readers with a comprehensive understanding of the key building
blocks essential for designing and deploying modern GenAl systems. By exploring concepts
such as retrieval and generation systems, vector databases, embedding techniques, advanced
prompting strategies, agentic architectures, and multi-agent collaboration, readers will gain
a strong foundation for building intelligent, scalable Al solutions. Additionally, the chapter
introduces critical topics like local model deployment, GPU infrastructure, speech processing,
memory management in agents, and industry standards like MCPs. These foundational
elements are crucial for advancing toward multimodal, reliable, and production-ready Al
applications.

Overview of generative Al

The evolution of generative models represents one of the most significant paradigm shifts in
Al In the pre-generative pre-trained transformers (GPTs) era, GenAl was shaped by powerful
techniques such as Boltzmann machines, variational autoencoders (VAEs), generative
adversarial networks (GANs), and autoencoders. These models achieved groundbreaking
results by generating unstructured data like images, audio, and even text. For instance,
GAN:Ss revolutionized realistic image synthesis, while VAEs enabled probabilistic generative
modeling of complex data spaces, including speech and document generation.
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While impressive, these earlier systems generally focused on single-domain generation with
limited ability to reason, plan, or generalize across tasks. They lacked the rich contextual
understanding, dynamic reasoning, and task-driven flexibility that define modern Al
experiences.

The true paradigm shift occurred not directly with GPT models, but with the introduction of
the transformer architecture itself in 2017 (in the seminal paper Attention Is All You Need by
Vaswani et al.). The transformer introduced the concepts of self-attention, parallel processing,
and positional encoding, enabling models to scale massively in both size and capability, far
beyond the limits of traditional recurrent neural networks (RNNs), long short-term memories
(LSTMs), or convolutional neural networks (CNNs) based generative models.

Building on the transformer foundation, GPTs ushered in the era of open-ended generation
models capable of not just recreating data but performing tasks like conversation, reasoning,
summarization, code generation, and multimodal synthesis. The modern GenAlI systems now
exhibit semantic awareness, dynamic problem-solving, and multimodal understanding across
text, images, and speech.

Several key advancements define this new age, which are as follows:
e Massive pre-training on diverse, heterogeneous datasets.

e Scaling laws showing predictable improvements with more parameters, data, and
compute.

¢ CoT prompting techniques for guided reasoning.

e Agentic Al architectures where models not only generate but also reason, plan, and
act.

e Multi-agent systems collaborating toward complex goals.
e Multimodal generation across text, vision, and audio modalities.

e DPrivate and local deployments driven by improvements in GPU infrastructure and
efficient models.

Note: The scope of this book is focused exclusively on new-age GenAl systems. If
you seek to explore the foundations of older generative models, including Boltzmann
machines, autoencoders, VAEs, and GANSs, you can refer to another book authored by
me and my co-author, titled '"Learn Python Generative Al: Journey from Autoencoders to
Transformers to Large Language Models" (published by BPB Publications). It provides
a detailed walkthrough of the classical generative modelling journey leading to today's
cutting-edge systems.

In this book, we move beyond classical generation, focusing on designing, building, and
deploying reasoning, planning, and action-oriented GenAl—the systems that are now
transforming industries, enterprises, and everyday experiences. Understanding this transition
is key: what started as data mimicry has evolved into intelligent, multimodal agents capable of
augmenting and automating human thought itself.
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While generative models have evolved to create rich, human-like outputs, not all Al solutions
rely solely on generation. In fact, many of the most powerful Al systems today combine retrieval
with generation to ground their outputs in real-world information, improve reliability, and
reduce hallucinations.

Before exploring generation strategies, it is essential to first understand retrieval systems,
the backbone of how Al finds, filters, and brings relevant knowledge into the conversation.
Retrieval forms a critical pillar of modern Al infrastructure, supporting tasks ranging from
search engines and recommendation systems to advanced retrieval-augmented generation
(RAG) pipelines.

In the next section, we will explore what retrieval systems are, how they differ from pure
generative models, and why they are indispensable for building accurate, scalable, and
production-grade Al applications.

Retrieval system

GenAl systems today are celebrated for their creativity and reasoning abilities, but behind
many of these intelligent behaviors lies a strong foundation built on retrieval mechanisms.
Retrieval is often the hidden engine that allows AI to ground its outputs in real-world
knowledge, find relevant facts, and maintain coherence across conversations or tasks. To truly
appreciate how retrieval has become such a critical pillar of modern Al it is important to first
understand how it evolved, from simple keyword matching to sophisticated, learning-driven,
and memory-augmented techniques.

Prior to understanding modern retrieval systems, it is helpful to trace their evolution briefly,
which is discussed in the following table:

Year Milestone Description

Term frequency-inverse document

1970s-2000s | frequency (TF-IDF), Best Matching Barly keyword-based retrieval methods

focused on matching exact terms.

25 (BM25).
2020 Dense passage retrieval (DPR) Introduced ('iense embeddings to semantically
match questions and documents.
2021 Hybrid retrieval Combined sparse (BM25) and dense (DPR)

methods to improve robustness.

Tight integration of retrieval with generation

2020-2022 | RAG models to enhance grounding.

In-context learning retrieval, Dynamic, reasoning-driven retrieval

2023+ memory-augmented retrieval. embedded inside LLM workflows.

Table 1.1: Historic timelines of retrieval systems
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With the preceding background, given in Table 1.1, in mind, it becomes clear that retrieval is no
longer a simple lookup process; it has evolved into a dynamic, intelligent layer that actively
augments the reasoning capabilities of Al systems. In the following sections, we will explore
how retrieval systems work, the key components that make them powerful, and how they
integrate seamlessly with generative models to build reliable, context-aware Al applications.

The foundation of modern retrieval systems can be traced back to early innovations like
DPR, introduced by Facebook Al Research (now Meta Al) around 2020. DPR was a major
breakthrough compared to traditional sparse retrieval methods (such as TF-IDF and BM25)
because it introduced dense vector representations for both queries and documents. This
allowed semantic retrieval, finding information based on meaning rather than relying purely
on keyword overlap.

Dense retrieval marked a major turning point: models could now encode the meaning of a
query and a document into a shared embedding space where similarity could be computed
efficiently. Instead of matching exact words, dense retrieval matched concepts and ideas.
However, early dense retrievers still had limitations: they sometimes retrieved irrelevant
passages due to coarse semantic matching, and scaling them to millions or billions of
documents required solving difficult engineering challenges around efficiency and latency.

Sparse retrieval

Sparse retrieval methods like TF-IDF and BM25 rely on matching exact keywords and term
frequency statistics. While older, they remain highly effective in cases where precision is critical
and queries are closely tied to specific terminology, such as in legal document search, scientific
literature, and enterprise document retrieval, where exact matches matter more than general
semantic similarity. Sparse retrieval also scales very efficiently with traditional inverted index
techniques and remains a strong baseline in many real-world search systems.

Dense retrieval

Dense retrieval methods, introduced with models like DPR and Approximate Nearest
Neighbor Negative Contrastive Learning for Dense Text Retrieval (ANCE), marked a
major shift from sparse term-matching techniques (e.g., BM25) toward semantic vector-based
retrieval. Dense retrievers excel when dealing with open-domain search, ambiguous queries,
or when synonyms and paraphrases are common, for example, in customer support bots,
multilingual retrieval, or semantic frequently asked questions (FAQs) matching. Dense
retrieval allows systems to understand the intent behind a question, even when the exact
words differ between the query and the document. The following figure shows the basic flow
of semantic retrieval using a vector database:
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Figure 1.1: Basic flow of semantic retrieval using a vector database

Note: To maintain clarity and simplicity, this figure illustrates document chunking and
embedding as part of the overall RAG process. In practice, these steps—chunking and
embedding of documents- are performed offline during the indexing phase and not during
real-time query execution. This simplification applies across all figures and workflows
presented in the chapters of this book.

The following figure illustrates the offline phase of a RAG pipeline, where raw documents
are first processed using language chunking tools (e.g., Llama-based parsers or LangChain
utilities) to divide them into manageable segments. These chunks are then passed through an
embedding model, such as OpenAl’s embedding API, to generate dense vector representations.
The resulting embeddings are stored in a vector database, forming the searchable index that
powers downstream retrieval during real-time query execution. This preprocessing step is
critical to enabling fast, scalable, and semantically rich document retrieval in multimodal or
LLM-based applications.

>

@ Embedding Model

Document Library |

—_—)

Vector DB with
Vector
Embeddings

Figure 1.2: Offline document indexing and embedding workflow

Reflecting on the evolution, today’s retrieval systems have dramatically advanced beyond the
early DPR architecture:
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e Hybrid retrieval: Modern systems increasingly combine sparse and dense retrieval
(e.g., BM25 + dense embeddings) to balance recall and precision, especially valuable
in long-tail queries or domain-specific knowledge bases.

e Multi-vector representations: Advanced methods like ColBERT (late interaction
models) encode multiple vectors per document rather than a single one, improving
retrieval accuracy without sacrificing too much speed.

e Retriever-generator fusion (RAG systems): Retrieval is no longer a standalone step;
it is now tightly integrated into the generation pipeline. Models like RAG retrieve
documents dynamically during inference and condition the generated output,
improving factual accuracy and reducing hallucinations.

e Memory-augmented retrieval: Agentic Al systems use episodic memory, blending
external document retrieval with internally learned knowledge to continuously adapt
and improve over time.

¢ Learning-to-retrieve (LTR) and in-context retrieval: Some newer architectures like
Retro and RePlug move beyond static indexes, enabling the model itself to learn
retrieval strategies during inference, deciding what to retrieve based on the reasoning
context dynamically.

Additionally, vector database technology has matured rapidly. Tools like Facebook AI
Similarity Search (Faiss), Milvus, Qdrant, Azure Al Search, and Pinecone offer scalable, high-
speed vector search, supporting billions of embeddings with approximate nearest neighbor
(ANN) algorithms, metadata filtering, and hybrid retrieval capabilities—all critical for
powering modern enterprise-grade RAG systems.

It is crucial to recognize that retrieval today is no longer just about fetching documents. It
has become an intelligent augmentation mechanism, involving filtering, reranking, reasoning,
and dynamic knowledge grounding. Retrieval is evolving from a backend lookup service into
a frontline reasoning component of next-generation Al

Thus, understanding retrieval deeply, not simply as a search technique but as an intelligent
augmentation strategy, is essential for building reliable, scalable, and goal-driven new-age
GenAl applications.

Retrieval systems are typically evaluated based on metrics like recall@k, precision@k, and Mean
Reciprocal Rank (MRR), which measure how effectively the system retrieves relevant documents
among the top results. We will cover retrieval evaluation in greater detail later, but for now, it is
important to remember that retrieval quality is judged by both accuracy and ranking efficiency.

Generation system

As we have seen, retrieval systems focus on finding the most relevant existing information.
However, many real-world tasks demand more than just retrieval—they require creation,
reasoning, and original synthesis. This is where generation systems come into play.
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In this section, we will explore what generation systems are, how they operate, and the core
techniques that power them. We will discuss different types of generation tasks, such as text,
image, and audio creation, and understand key mechanisms like autoregressive modeling,
diffusion models, and sampling strategies. Additionally, we will cover important concepts like
temperature control, prompt design, and the balance between creativity and factuality.

We will also examine the typical challenges faced by generation systems, such as hallucination,
coherence issues, and safety risks, and highlight where these systems truly excel, especially
in tasks that demand open-ended creativity or complex problem-solving. Finally, we will
briefly introduce how retrieval and generation are increasingly being combined in modern Al
architectures to build more grounded and intelligent systems.

Let us begin by understanding the fundamental nature of generation systems and how they
differ from purely retrieval-based approaches.

Generation systems are Al models designed to produce new content, rather than simply
retrieve it. They can generate text, images, audio, code, and even multimodal outputs by
learning complex patterns from training data. Unlike retrieval, which surfaces information
that already exists, generation enables models to compose new sentences, invent new images,
and solve new problems dynamically at inference time.

Modern generation systems are typically large-scale neural networks or LLMs trained with
billions of parameters on massive datasets across multiple domains. The following figure
shows the types of LLMs and generation models:
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Figure 1.3: Types of LLMs and generation models

Types of generation systems

GenAl systems span multiple modalities, each designed to create content such as text, images,
or audio based on user input, showcasing the versatility and power of modern machine
learning (ML) models. Let us look at the types of generation systems:
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Text generation: Models like GPT, Llama, and Claude specialize in generating coherent
paragraphs, answering questions, summarizing articles, translating languages, or
even writing poetry and code. They are autoregressive, meaning they predict the next
token based on previous tokens—enabling them to build long, meaningful sequences
word by word.

Image generation: Models like DALL-E, Stable Diffusion, and Imagen generate images
from text prompts (text-to-image generation). These systems rely on techniques like
diffusion models or GANSs to iteratively create realistic images from random noise,
conditioned on user instructions.

Audio generation: In audio generation, models like Whisper (for ASR) and VALL-E
(for speech synthesis) produce human-like speech or even create music. These models
learn representations of sound waves and either recognize speech (ASR) or generate
audio based on text inputs.

Core techniques behind the generation are as follows:

Language models: Language models are trained to predict the next word (token)
given a previous sequence, and so they are called autoregressive models, as explained
in Figure 1.3. Large models like GPT-3/4/03, Llama, or Claude learn contextual
relationships and world knowledge through self-supervised learning, enabling
diverse generation tasks such as answering questions, summarizing documents, and
creative writing.

Vision models: Models like DALL-E and Stable Diffusion apply transformer-like
architectures to image patches or latent representations, allowing text-to-image
generation. They capture the structure, style, and content of visual elements in latent
spaces.

Diffusion models: Diffusion models start with random noise and iteratively denoise
it to create a realistic sample. Popular for generating high-fidelity images (e.g., Stable
Diffusion, Imagen), they have also been adapted for audio and even 3D model
generation. Diffusion models are being actively adapted for language tasks, though
they are still less mature and less dominant than transformer-based models (like
GPT). The field of language diffusion models is rapidly evolving, and several research
efforts have shown that diffusion-based generative models can be competitive with or
complementary to autoregressive language models.

Autoregressive generation

In autoregressive models (like GPT), each output token is generated one at a time, conditioned
on previously generated tokens. This sequential token-by-token generation allows models
to produce highly coherent outputs, but can also lead to error accumulation if not managed
carefully. The following figure explains how LLM generates in an autoregressive manner (one
token at a time):
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Text Input

"Today, 'is a beautiful day
outside.”

s A

Tokens

['Today", "is", "a, "beautiful’
day, "outside."."]

Token IDs

2035, 2003,1037, 3376, 215
outside, 1012

Language Model

Vector Representations

Figure 1.4: LLM generation in an autoregressive manner (one token at a time)

The following are the temperature and sampling strategies:

e Temperature: Controls the randomness of the generation. Lower temperature | more
deterministic and factual outputs. Higher temperature | more creative and diverse
outputs.

e Top-k sampling: Limits the next token choice to the top-k most probable tokens.

e Top-p (nucleus) sampling: Selects from the smallest set of tokens whose cumulative
probability exceeds top-p.

Tuning these parameters allows fine control over creativity vs. precision in Al generation.

Prompting strategies

Prompts are critical for steering the behavior of generation systems. Advanced prompting
techniques like CoT enable multi-step reasoning by encouraging models to explain their
thought process before answering. We will explain these in more detail in the next section.
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Understanding where generation systems excel

Generation systems are particularly powerful in the following:
e Open-ended creativity tasks (storytelling, image creation, poetry, coding).
e Complex reasoning and problem-solving beyond retrieval capabilities.
e Personalization and dynamic response generation (chatbots, educational tutors).

e Bridging gaps where no pre-existing data exactly fits the query.

Combining retrieval and generation

While generation systems are incredibly powerful at creating new content, they sometimes
struggle with factual accuracy, up-to-date knowledge, and grounding their outputs in real-
world information. To overcome these challenges, modern Al architectures increasingly
combine the strengths of retrieval and generation, giving rise to a powerful paradigm known
as RAG.

In the next section, we will explore how RAG systems work, why they are critical for building
reliable AI applications, and how they seamlessly integrate retrieval and generation into a
unified, intelligent workflow.

Retrieval-augmented generation

RAG is an advanced Al architecture that combines retrieval and generation into a unified
workflow. Instead of relying solely on a model's internal knowledge (which may be outdated
or incomplete), a RAG system first retrieves relevant external information and then generates
an answer conditioned on that retrieved content.

RAG emerged to address key challenges faced by pure generation models, which are as
follows:

¢ Hallucination: It sometimes generates fabricated, plausible-sounding but incorrect
outputs.

e Stale knowledge: Pre-trained models have a static knowledge base (cutoff dates).

e Groundedness: Users often demand outputs linked to verifiable, real-world
information.

RAG bridges these gaps, making outputs more accurate, grounded, and up-to-date.

RAG working

A RAG system typically involves two major steps, which are as follows:

1. Retrieval step: Given a user query, the system first retrieves the top-k most relevant
documents or chunks from an external knowledge base (e.g., a vector database).
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2. Generation step: The retrieved documents are passed as context to a language model

(LLM), which generates the final answer conditioned on the retrieved information.

Thus, the model is not generated from memory alone; it is reading first, then reasoning.

Architecture of a basic RAG pipeline

The following list outlines how a basic RAG pipeline looks like:

Query understanding: The input query is processed, optionally rephrased or
expanded, to optimize retrieval.

Retrieval: A dense or hybrid retriever fetches the most relevant documents from a
vector database or search engine.

Context preparation: Retrieved documents are selected, truncated, chunked, and
formatted to fit within the LLM's input context window.

Generation: The LLM is prompted with both the original query and the retrieved
documents to generate a grounded, contextually rich response.

Output delivery: The model's final response is returned to the user.

Types of RAG architectures

There are many different types of RAG architectures evolving today, depending on how
retrieval and generation are orchestrated. However, to keep the scope focused, the following
are the two most common and practical ones:

Single-stage RAG:
o Asimple pipeline: retrieve | generate.
o Used when retrieval quality is high and latency needs to be minimal.

The following figure shows a single-stage RAG architecture:
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Figure 1.5: Single-stage RAG architecture
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e Two-stage RAG:
o Retrieval | reranking | generation.

o Afterinitial retrieval, a second model (e.g., cross-encoder) reranks documents to
improve the quality before passing them to the generator.

o Reduces hallucination by focusing the generation only on the most relevant
documents.

The following figure shows a two-stage RAG architecture:
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Figure 1.6: Two-stage RAG architecture

Iterative RAG

The following are the two iterative RAG:
e Retrieval and generation happen across multiple turns.

e The model can retrieve additional documents dynamically if the first batch is
insufficient, refining the answer step-by-step.

Vector databases and RAG

Vector databases are critical infrastructure for efficient RAG systems.

e Purpose: They store document embeddings and enable fast semantic search based on
vector similarity.

e Examples: Faiss (Meta), Qdrant, Milvus, Pinecone, Weaviate.
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ANN algorithms are used for scalability, finding close enough vectors quickly rather than exact
matches, enabling real-time retrieval over millions or billions of documents.

Vector stores also allow metadata filtering (e.g., date, author) and sharding for distributed
retrieval, essential for scaling enterprise RAG systems.

Prompt engineering for RAG

How the retrieved content is formatted and fed into the LLM significantly affects output
quality.
Key techniques include the following:

¢ Chunking: Breaking large documents into smaller pieces to fit multiple passages into
the prompt.

¢ Windowing: Sliding a fixed-size window over documents to capture local context
around keywords.

e Context management: Selecting the most relevant chunks without exceeding the
model’s token limit.

Well-constructed prompts ensure the LLM focuses on the most important information during
generation.

Advanced RAG techniques

As RAG systems evolve, advanced techniques are being developed to enhance retrieval
quality, improve response accuracy, and enable more context-aware generation. The following
are some of the advanced RAG techniques:

e RAG with reranking;:

o Use a reranker (like a cross-encoder) to evaluate and reorder the retrieved
documents based on fine-grained relevance scoring before generation.

o Improves precision without significantly increasing retrieval time if optimized
properly.
e Memory-augmented RAG:

o Retrieval is not only from static knowledge bases but also from episodic
memories-storing past conversation snippets or learned experiences.

o Enables dynamic, personalized, and context-aware responses in multi-turn
dialogue systems.

e Multimodal RAG:

o Extend RAG to retrieve both text and images (or videos, audio).
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o Example: In a medical assistant role, retrieve x-rays and patient notes together,
feeding both into a multimodal model like GPT-4V or Flamingo.

Applications of RAG

RAG systems have rapidly gained adoption across industries. Let us understand its
applications:

e Enterprise chatbots: Customer service bots grounded in company knowledge bases.

e Document QA systems: Answering queries from large corpora like research papers,
legal documents, or technical manuals.

e Knowledge management: Organizing and dynamically accessing enterprise
knowledge in real-time.

e Personalized Al assistants: Tailoring responses based on user-specific documents,
emails, notes, etc.

In every case, RAG ensures the Al system produces reliable, verifiable, and grounded outputs.

Orchestration in Al systems

As Al systems become increasingly complex, especially with the rise of RAG and agentic Al
systems, the need for intelligent orchestration has become critical. Orchestration refers to how
different components, such as retrieval engines, language models, memory modules, and
external tools, are managed, sequenced, and coordinated dynamically to achieve a specific goal.

Unlike traditional single-call LLM applications, RAG systems and agentic systems involve
multi-step reasoning and dynamic decision-making, requiring sophisticated orchestration
frameworks.

Orchestration in RAG systems
In RAG systems, orchestration involves the following:
¢ Query understanding: Preprocessing user queries before retrieval.

¢ Document retrieval: Interfacing with vector databases (e.g., Faiss, Qdrant, Pinecone)
to fetch top-k relevant documents.

e Context preparation: Chunking, selecting, and formatting retrieved documents to fit
within the LLM’s context window.

e Prompt construction: Dynamically inserting retrieved knowledge into well-structured
prompts.

¢ Response generation: Using the LLM to generate outputs grounded in the provided
documents.

e Post-processing (optional): Filtering, reranking, or verifying model outputs.
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Frameworks like LangChain, Llamalndex, and Haystack specialize in orchestrating these
steps automatically, making it easier to build scalable and production-ready RAG pipelines.

The following figure explains how LangChain is orchestrating the entire RAG process:
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Figure 1.7: The fat lines are orchestrated by LangChain or similar orchestrators

Good RAG orchestration ensures the following:
e Minimal latency
e High retrieval quality
e Tight coupling between retrieval and generation

e Robust handling of token limits and memory

Orchestration in agentic systems

In agentic systems, orchestration becomes even more dynamic.

An agent is an Al entity capable of the following:
e Reasoning about a task.
¢ Choosing actions (e.g., tool usage, API calls, retrievals).
e Executing actions step-by-step.

e Reflecting and adjusting its plan dynamically based on intermediate results.

Agentic orchestration involves the following;:

e Tool selection: Deciding which external tools or functions to call based on the current
goal.



