Building Multimodal
Generative Al
and
Agentic Applications

Shaping concept to code for the future of multimodal
and advanced agentic GenAl applications

Indrajit Kar

www.bpbonline.com

ii

First Edition 2026
Copyright © BPB Publications, India
ISBN: 978-93-65898-385

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in
any form or by any means or stored in a database or retrieval system, without the prior written
permission of the publisher with the exception to the program listings which may be entered, stored
and executed in a computer system, but they cannot be reproduced by the means of publication,
photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true and correct to the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but the
publisher cannot be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective
owners but BPB Publications cannot guarantee the accuracy of this information.

To View Complete
BPB Publications Catalogue
Scan the QR Code:

www.bpbonline.com

iii

Dedicated to

My parents, my wife, my kids, and the mother

iv

About the Author

Indrajit Kar is a distinguished AI thought leader, author of 5 AI/ML books, innovator, and
author with over 22 years of experience driving transformative Al-led products and platforms
across industries. Throughout his career, he has led numerous high-impact teams responsible
for developing end-to-end solutions in AL, ML, GenAl, and data science - guiding projects
from conceptualization and design to deployment and scaling.

In his current role as head of Al, Indrajit spearheads large-scale initiatives that deliver
measurable business impact across a diverse portfolio of global clients. His work is rooted in
deep technical expertise across GenAl, large language model (LLM) architectures, MLOps,
natural language processing, and computer vision. He has played a key role in integrating
LLMs and autonomous Al agents into real-world applications spanning sectors such as
e-commerce, healthcare, life sciences, telecommunications, and manufacturing.

Indrajit is also a strategic advisor and collaborator to C-level executives, helping enterprises
unlock business value through advanced AI product and platform transformations. His
leadership consistently bridges the gap between cutting-edge research and enterprise-scale
implementation, accelerating Al adoption across organizations.

A recognized voice in the AI community, Indrajit has authored two books, including one
dedicated to GenAl and its industry applications. He has also contributed extensively to Al
research, with 27+ published papers, 21 patents filed, and multiple accolades, including eight
Best Paper Awards from reputed conferences and institutions. His work often explores the
intersections of innovation, scalability, and responsible Al

With a legacy of leading R&D programs and having managed Al services and productization
efforts for Fortune 500 companies, Indrajit continues to shape the future of intelligent systems.
His passion for innovation, combined with a vision for ethical and scalable Al, drives his
mission to empower businesses and communities through transformative technology.

About the Reviewers

% Dhanveer Singh is a technology leader at Capital One USA with over 19 years of
experience in software engineering, cloud architecture, and large-scale system
modernization across financial services, insurance, and retail. He specializes in AWS,
microservices, containerization, DevOps, big data, and AI/ML, delivering secure,
high-performing platforms that process billions of transactions and serve millions
worldwide.

An advocate of cloud-native architectures and automation, Dhanveer has led
transformative initiatives in cloud cost optimization, resilience engineering, and
cybersecurity automation, driving measurable efficiency and advancing enterprise
digital transformation. He has also filed multiple patents in areas of data integration,
transformation, data security, and cloud automation, underscoring his focus on
innovation.

Beyond his technical leadership, he contributes as a reviewer and TPC member for
international journals and conferences, serves as a judge for global IT and cybersecurity
awards, and mentors through STEM and CodeDay programs.

Dhanveer is a Fellow of IETE and IAENG, and an active IEEE and ACM member.

% Harvendra Singh is a distinguished technology leader specializing in cloud
engineering, architecture, automation, and Al-powered solutions. He designs
and implements scalable, secure systems utilizing Azure, .NET, C#, Python, GCP,
Kubernetes, Databricks, and other cutting-edge technologies. With expertise in
cloud-native applications, microservices, event-driven architectures, and distributed
systems, Harvendra drives innovation in cloud and Al ecosystems, delivering high-
impact solutions that drive business value and sustainable growth.

% Manish Jain is the vice president and head of Al architecture at Firstsource Solutions,

where he leads enterprise-wide Al transformation for Fortune 100 organizations. With

more than 20 years of technology leadership, including over a decade driving advanced

Al innovation, he has earned recognition as an architect of transformative solutions

that deliver quantifiable business impact. In addition to corporate responsibilities, his

acts as a technical consultant for Deeplearning.ai and mentors at Analytics Vidhya. He
also serves as a manuscript reviewer for prominent Al publishers such as Manning

vi

and Packt, positioning him at the crossroads of research and practical enterprise
applications. Manish is unique blend of deep technical expertise and proven executive
leadership enables him to guide organizations through the strategic and operational
aspects of Al transformation. His commitment to advancing the Al community
is evident in his advisory and mentoring roles, as well as his involvement in peer-
reviewed publishing.

These experiences make a compelling authority on the imperatives of Al transformation
and the practical challenges of scaling Al across complex enterprise environments,
consistently linking innovation with measurable outcomes.

vii

Acknowledgement

I extend my deepest appreciation to my family, parents, wife, in-laws, and children, whose
steadfast encouragement and belief in me have been the cornerstone of this journey. Heartfelt
thanks to BPB Publications for their patience and trust, allowing the book’s multi-part
publication to thoroughly cover the dynamic field of AL I am also grateful to my companies
for fostering growth and providing opportunities to develop GenAl and agentic applications,
which informed the insights shared here. To everyone who supported me, seen and unseen,
your guidance and encouragement have profoundly shaped this journey, for which I am
eternally thankful.

viii

Preface

We are living in the age of intelligent collaboration, where Al is no longer just a tool, but a
partner capable of retrieving knowledge, generating ideas, reasoning through problems, and
interacting across modalities like text, images, and voice. The emergence of multimodal and
agentic applications marks a turning point in how we build, deploy, and rely on Al

This book, Building Multimodal Generative Al and Agentic Applications, is a practical guide for
those who want to move beyond theory and actually build the future of Al systems. Across
18 chapters, you will move step-by-step from fundamentals to advanced implementations,
starting with retrieval, generation, and orchestration; progressing into multimodal workflows
that combine text, images, and voice; and then advancing toward real-world applications like
text-to-SQL systems, OCR, fraud detection, and Al operations.

Every chapter is designed to be hands-on and approachable. You will find conceptual
explanations, system design principles, code walkthroughs, and to do exercises that push you
to experiment and learn by doing.

The goal of this book is not only to explain how these systems work, but also to empower you
to build your own scalable, multimodal, and agentic Al applications, applications that are
reliable, safe, and impactful.

Whether you are an engineer, researcher, or leader in technology, I hope that this book equips
you with the knowledge, confidence, and inspiration to shape the next-generation of Al.

Chapter 1: Introducing New Age Generative Al - This chapter introduces the key building
blocks of modern Al systems. It begins with an overview of generative Al and then explores
retrieval systems, generation systems, and the strengths of each. It covers how retrieval-
augumented generation (RAG) generation combines the two, and how orchestration helps
different AI components work together. The chapter also explains tokens, vector databases,
and reranking methods, along with the differences between bi-encoders and cross-encoders.
Finally, it discusses essential topics like guardrails for safe Al use, the role of agents, and the
importance of Model Context Protocols.

Chapter 2: Deep Dive into Multimodal Systems - This chapter focuses on vision-language
models and their role in multimodal Al It explains what vision-language models are,
compares different implementation approaches, and explores how they differ from broader
multimodal GenAlI systems. The chapter also looks at vision-language models in more depth
and introduces ways to classify multimodal systems based on their outputs.

ix

Chapter 3: Implementing Unimodal Local GenAI System - This chapter explores the practical
side of building GenAl systems. It begins with the role of GPUs in today’s Al landscape and
how to make use of a local GPU. The chapter then introduces Ollama, including how to
generate a PDF document with it. Moving forward, it explains how RAG works, along with
the key challenges involved in implementing RAG effectively.

Chapter 4: Implementing Unimodal API-based GenAl Systems - This chapter provides a
hands-on introduction to working with OpenAI’s APIs and models. It explains how to move
from using OpenAl for basic tasks to building more advanced agentic Al solutions. You will
learn how to perform multi-document queries, implement a modular retrieval-augmented
generation system using OpenAl and Faiss, and explore a set of to do steps for extending these
capabilities further.

Chapter 5: Implementing Agentic GenAl Systems with Human-in-the-loop - This chapter
focuses on designing and advancing agentic generative Al systems. It starts with principles of
architecting such systems and then walks through an end-to-end human-in-the-loop (HITL)
RAG workflow. From there, it explores how HITL setups can evolve into multi-agent HITL
RAG systems. The chapter concludes by clarifying the differences between agentic Al and Al
agents, highlighting their distinct roles and applications..

Chapter 6: Two and Multi-stage GenAl Systems - This chapter provides a deep understanding
of the concepts of interactions within dense retrieval systems and their importance in RAG.
It explains the role of interaction models in two-stage RAG systems and compares different
reranking strategies, including late interaction, full interaction, and multi-vector models.
The chapter then introduces two-stage and multi-stage RAG architectures, discusses grading
mechanisms for evaluating retrieved results, and demonstrates how to implement a multi-
stage RAG workflow with routing for more accurate and efficient responses.

Chapter 7: Building a Bidirectional Multimodal Retrieval System -This chapter introduces
multimodal systems and how they can be classified based on their outputs. It then explains
the working of a multimodal retrieval system and provides a code implementation with step-
by-step explanation. The chapter closes with a to do section, giving readers practical exercises
to apply and deepen their understanding.

Chapter 8: Building a Multimodal RAG System - This chapter focuses on practical approaches
to generation and evaluation using LLMs. It begins with the implementation of generation
techniques, followed by an introduction to the concept of LLM-as-a-judge and its application
in building recommender systems. The chapter also covers how to incorporate grading
mechanisms with OpenAl to improve evaluation. It concludes with a to do section, giving
readers exercises to apply these ideas in practice.

X

Chapter 9: Building GenAlI Systems with Reranking - This chapter explores the concept
of reranking and its critical role in improving retrieval and RAG systems. It explains how
reranking is applied in both text-based and multimodal contexts, with a focus on using cross-
encoders in multimodal RAG. The chapter also introduces the cross-encoder architecture in
multimodal settings and the idea of multi-index embedding within RAG systems. Alongside
these concepts, it provides a code implementation with detailed explanation and concludes
with a to do section to help readers practice and solidify their understanding.

Chapter 10: Retrieval Optimization for Multimodal GenAlI - This chapter examines how to
make retrieval systems more efficient and effective. It begins by outlining common drawbacks of
retrieval systems, then introduces various optimization techniques to address these limitations.
The chapter also explores retrieval optimization in detail, showing how these methods can be
applied to improve performance. It then shifts focus to multimodal RAG systems, explaining
how adaptive index refresh can enhance their accuracy and responsiveness. Finally, it provides
a to do section with exercises for readers to apply these ideas in practice.

Chapter 11: Building Multimodal GenAl Systems with Voice as Input - This chapter explores
how RAG extends beyond just image and text. It introduces the core concepts of expanding
RAG to other modalities and shows how speech interfaces can be integrated into the RAG
architecture. The chapter also provides a step-by-step code implementation of a voice-enabled
RAG system, demonstrating how to bring these ideas into practice.

Chapter 12: Advanced Multimodal GenAlI Systems - This chapter highlights the importance
of reasoning in GenAl systems. It explains the different types of reasoning used in GenAl and
why they matter for building more reliable and intelligent models. The chapter also introduces
key benchmarks that are used to evaluate reasoning capabilities in Al systems.

Chapter 13: Advanced Multimodal GenAlI Systems Implementation - This chapter focuses
on how reasoning can be enhanced in GenAlI through effective prompting techniques. It then
explores specialized architectures that bring reasoning into play at different stages—first
during reranking, where results are refined, and then at the recommendation stage, where
reasoning helps deliver more accurate and context-aware suggestions.

Chapter 14: Building Text-to-SQL Systems - This chapter delves into the complexities of
text-to-SQL and why it is considered a challenging problem. It begins by explaining the basic
concepts and then explores real-world applications where text-to-SQL can make a significant
impact. The chapter discusses the key challenges involved, followed by practical guidance on
designing an effective text-to-SQL system. It also covers entity extraction using large language
models, highlighting how this integrates with text-to-SQL to improve performance. Finally,

xi

the chapter emphasizes how such systems can enhance data accessibility and literacy, while
also introducing performance metrics and best practices to ensure reliability.

Chapter 15: Agentic Text-to-SQL Systems and Architecture Decision-Making - This chapter
presents the design and implementation of an agentic text-to-SQL system tailored for real-time
retail intelligence. It explains the system’s architecture in detail, along with code walkthroughs
for better understanding. A step-by-step pipeline is provided to show how the system
processes queries, leading to meaningful outputs. The chapter concludes by demonstrating
the actual results generated by the text-to-SQL system and how they address the original
problem statement.

Chapter 16: GenAl for Extracting Text from Images - This chapter introduces three different
approaches to applying GenAl for optical character recognition. It explains how OCR works
on images, as well as how it can be extended to multimodal documents that combine text,
images, and other elements. The chapter concludes with a to do section, giving readers
practical exercises to apply and reinforce what they have learned.

Chapter 17: Integrating Traditional AI/ML into GenAI Workflow - This chapter explores
how traditional machine learning models can be integrated into GenAI workflows through
a detailed case study. It presents a practical use case of hybrid ensemble learning for telecom
fraud detection, showing how models like XGBoost can be wrapped and enhanced within an
LLM-powered system. The chapter also provides a comparative overview of different ways
ML models can be combined with GenAlI to create hybrid solutions. It concludes with a to do
section, offering readers hands-on activities to deepen their understanding.

Chapter 18: LLM Operations and GenAlI Evaluation Techniques - This chapter highlights the
importance of operations in building and running production-grade GenAlI applications. It
compares evaluation methods for LLMs and RAG systems, introduces the concept of RagOps,
and emphasizes the need for continuous monitoring and observability platforms. The chapter
also explores how graph-enhanced RAG can improve recommendation systems and provides
a comparison of different Ops practices in modern software development. Finally, it offers
practical guidance on setting up MLflow for managing experiments and deployments.

xii

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/78£896

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Building-Multimodal-Generative-AI-and-Agentic-Applications.
In case there’s an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the
accuracy of our content to provide an indulging reading experience to our subscribers. Our
readers are our mirrors, and we use their inputs to reflect and improve upon human errors,
if any, that may have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having difficulties due to any
unforeseen errors, please write to us at: errata@bpbonline.com

Your support, suggestions and feedback are highly appreciated by the BPB Publications’
Family.

At www.bpbonline.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters, and receive exclusive discounts and offers on BPB
books and eBooks. You can check our social media handles below:

Instagram Facebook Linkedin YouTube

Get in touch with us at: business@bpbonline.com for more details.

xiii

Piracy

If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link to
the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We have
worked with thousands of developers and tech professionals, just like you, to
help them share their insights with the global tech community. You can make
a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave
a review on the site that you purchased it from? Potential readers can then see
and use your unbiased opinion to make purchase decisions. We at BPB can
understand what you think about our products, and our authors can see your
feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings around the world, new
releases, and sessions with the authors:

https://discord.bpbonline.com

xiv

Table of Contents

1. Introducing New Age Generative Al...... i 1
INErOAUCHON. ...t 1
SEUCHUTE. ..o 2
ODJECHIVES ...t 2
Overview of generative Al..........cccccooviiiiiiiiiii 2
Retrieval SYStEMcccciiiiiiiiiiiiiiii s 4

SPATSE TEHTTEUAL.......ovveiiii s 5
Dense 1etriCUAL.........cucuvveveieiiiiiiicicieieie e 5
Generation SYSteIM.........ccciviiiiiiiiiii s 7
Types of GENeration SYSEEIMScccveveviiiuiuiuiiiiiiiiiiiicieic et 8
Autoregressive GEMEFALIONcvvvvuviviiiiiiiiiiiicicit st 9
Prompting StrAtEQIescccvviviviiiiiiiiiiiiiiicc 10
Understanding where generation systems eXcel..........cocceuvecieuriceuninccrnineciriceeeenens 11
Combining retrieval and geNerationcccccvccveiiiiiiiiiiniiciiiiiisiicisee s 11
Retrieval-augmented generation ... 11
RAG WOTKING ..ot 11
Architecture of a basic RAG Pipeline............cccccccviiviiiiiiiiininciiiiiciiicicccccccsci 12
Types of RAG ArchiteCtUres...........ccoovovviiiviiiciciiiciiiiiiiiicicicicccc 12
Tterative RAGcooviiiiiiieiit et 13
Vector databases and RAGcccocoveurueueeieieiiiiiiiicceeeee s 13
Prompt engineering for RAG........ccccccvvmiiiiiiiiiiiiciciccccctitccecc 14
Advanced RAG teCHNIGUEScccucuiiiiiiiiiiiiiiciciiiiiicicceect e 14
Applications Of RAG ...t 15
Orchestration in Al SYSEIMIS........c.evicuiiicueiicieiriceiecieereee e eseaens 15
Orchestration i RAG SYSEEMIScccvcvviiiiiiiciiiiiiiiiiicicecccc e 15
Orchestration in AENEIC SYSEEMISc.cccvvieueuruciiiiiiiicicic e 16
Tokens in AL SYStEIMS........ccccvviiiiiiiiiiiiiiii e 17

AY/Tei 10} ate F=1 =1 o 1= =L <R RRRRRO R 19

Understanding vector databasescoccvvvvviiviiiicicicieiiiiiiiiiiccceese s 20
Indexing algorithms in vector databases..............ccccvvueueivieiviiiiiicicceessecces 20
Search algorithms in vector databASes................ccocvuvueieieieiiiiiiicicieeeeeee e 21
Embeddings and embedding models..................ccocvvvneiniiiiiiciciciecciiiccccee e 22
Importance of vector databases for RAG and agentic Systems...........c.occvvvvevevecccncuennnn. 23
RETANKING «.evviiiiicc e 23
Bi-encoders vs. Cross-enCOders.........ocuiuiurieiniiiiiiiiiiciiceec s 24
Cross-encoders for Teranking..........cocoveeeieiniiiieeieeieiisescccee e 25
GUATAIAILS....ocvei s 25
Types of QUATATAILSc.cvovviiiiiiiicicce e 26
Methods of applying QUATATAILScoevvveieiiiiiiiiicciececce s 27
Without QUATATALIScocovviiiiicicee e 27
Industry examples of gUardrail SOIULIONSccovvrvrueueieieiiiiiiiiccce s 27
AGOINES 1.t 29
Agentic RAG vs. n0n-agentic RAG.........ccccoovvvveiiiiiiiiicicieecicee e 30
Model Context ProtoCols..........ccouiiiiiiciiiniiicic s 31
CONCIUSION ...ttt 32
2. Deep Dive into Multimodal Systems.........uveeevnriesnierniieinreinncennceneesesensnenens 33
INErOAUCHON. ... s 33
SEIUCKHUTC. ..o 34
ODJECHIVES . s 34
Understanding vision-language models............ccccoorrmiiiiniiniiiincccccces 34
Categories of vision-1anguage Modelscocovveeieieieiiiiiiiiiciceeciccce e 34
Core architectural components of vision-language models...............c.cocovvvvvvvneniniennn. 36
Challenges in vision-1anguage MOAelSccovvreueieieiiiiiiicicieeececcee e 39
Multimodal GenAIL SYSEML...........cuvviveviiiiiieieieiciitittcce s 40
Multimodal vector embeddingcccccceeiiiiiiiiiiiiii 43
Multimodal vector dAtabASecccveueveieiiiiiiiiiccee e 44
COIIECHIONS oot 45
Points And POint IDSccovvuruemeieieiiiiiiiiiccie st 45

VIBCEOTS vttt ettt e et e e e e e e e e e 45

xvi

PAYIOAA ... 45
5t01age And VECLOT SEOTEcvcvvvicecicieieieieiecccce e 46
TNACKXING.c.ovviiiii s 46
Implementation COMPATISONS..........ccovruiueiriririiiicccieie s 48
Single collection, partitioned via PAYIOAAccovveveviveiiiiiiiicieeccee 48
Multiple collections with global iNAexiNg............cccovvvuvrierieieiiiiiiiiceeeeeeciees 49
Multimodal generative Al systems vs. VLMS.........ccccevuniniiiniiiicncccccccccicees 50
Vision-language models...........ccccooiiiiiiiiniic s 50
Multimodal generative Al SYSIEIMScvvueveveieiiiiiiiicicieieieiecicce s 50
Using vision-1anguage mModelscweeeieioiiiiiiiiiiieieieieiiicsscces e 52
Using multimodal generative Al SYSEMIS..........cccovvvvuiurueieieieiiiiiiiicceees s 52
Real-world example COMPATISON..........ccvoviiiiurieieieiiiiiiiiicicciee e 53
Output-based classification of multimodal systems...........ccccovvvreiiiniiiicccn 53
Text-t0-TMAZE SYSEINS ...ttt 54
Image-to-text SYSIEMIS........cooueuiiveiiiieiiee 55
Text and TMAZE SYSEEINScvvuvureeieieieieiciiiiecctcce e 56
Text-only to specifications and iMage SYSIEMScoevevevevcerurrereieieieiiiiiscceee e 57
Text-10-SQL SYSEEINS ...ttt 58
Text-t0-COA SYSLOIMS ... 59
CONCIUSION ...ttt 61
3. Implementing Unimodal Local GenAl Systemueeeevereninrntnneeeneensnsssssessssnesenennes 63
INErOAUCHON. ... s 63
SEIUCKHUTC. ..ot 64
ODJECHIVES . 64
GPU in today’s generative Al SyStemMS..........ccovovviiiiinininiiiiiicccc s 64
Using @ 10cal GPU ... 65
Architectural COMPONEIESccvovviiiiiiieieieisieieictccee s 67
ADOUL OllAMA. .. .iiiiiiicicii s 68
Alternatives 10 OlIAMA..............oovvviiucueieieieiciiitcccee s 69
Generate a PDF document with Ollama.........cccccviiiiiniciiniiiniciicccincscceeaes 71

RAG implementation..........cccviiiiiicciie s 73

Load and chunk the PDF dOCUTNENEcccoovuiueiiieiiiiiiiiiiccieieesieiesccccseee s 75
Alternative chunking strategies in LangChaiN............cccvvveiviviiiiciccccssieiiccciies 76
Creating embeddings with MetAdAtA..............c.cccovvveieieiiiiiiiiiceee e 77
USING them i1 COAC......uvvviiiiiiiciciciciee s 78

Hybrid search with semantic and Keywordcccvveviviviiiicccesssiiccccciines 79
Other 1etrieVers YOU CAN USEc.cveueveviiiicicicieisisieieietesccscaese et 79
Conversation Memory DUSferccveeeiiiiiiiiiiicieeeicsccce e 81
LLM configuration natural [anguage geNerationcccceeevveievivccereveeeiisisisinnnns 81
ReAct prompt templateccvveveieieiiiiiiicicicccscctc s 81
Building the conversational QA CHAINccccvovrurmeieieiiiiiiiiccceee e 82
USEE CRAL LOOP ...ttt 83
Challenges in RAG......c.ccoiiiiiiiiii s 84
CONCIUSION ... 86
4. Implementing Unimodal API-based GenAl Systemsccceuvrureeeereresesenensnnsnnnenenennns 87
INErOAUCHON. ...t s 87
SEIUCKHUTC. ..o 87
ODJECHIVES .. 88
Getting started with OpenAI APIs and models..........ccccviiiinicinininciniciniciniscieaes 88
OpenAl AS @ COMPANLYvovvevereririiiiiititiie et 88
Overview of the OPen AL APlL..........cccoviviiiiiiiicieeicicitcee e 88
Core API eNdPOINES......ccuruiuiiiiiiiiccccicie s 89
Major Open Al MOAEIS............cccveveieiiiiiiiiieieie ettt e 89
Accessing OpenAl MOAEIS............c.ccveueuiueieiiieiiiiiiiccee s 90
Choosing the 1ight MOAelccccvueuiiiiiiiiiiiiicccee e 91
Best practices for DEGINMETS..........cvvueueieiiiiiiiiiiiiicieie et 91
From OpenAl to agentic Alccoovvvoiiiiiiieiiiiiiiiiiiiiciecee e 92
OpenAl's agentic API €COSYSIEMc.ovvveveveviiiiiiiiiiiiicieieicc e 92
ReESPONSES APl ...t 92

AGeNES SDK ..ot 93
OPCTALOT .ot 93

xviii

ASSISEANES APl 94
Multi-dOCUMENt QUETYvviiiiiiicccci s 94
Implementing modular RAG with OpenAl ..o 96

MaiTL CONETOLIET ... s 96
CONFIGUIATION .. 97
Embedding initialization...........ccocovvurueueieisiiiiiiiiiciciceieiessccce e 97
VBCLOT SEOTC SCHUP ..t 98
Metadata tAZGINGcvovviuiirieieieieiciiccee s 99
Document loading and cCHUNKingcccoovvvcmreesiniiiiiicceeeeesscccee e 99
HYDTIA TOHIEVCT ... 100
Enforce metadata-based filtering during retrieval..............ccooevvvvivvivicciceninnnn, 100
LANGUAZE MOACL...........ovvviiiiiiciicieiciets s 101
PrOmpt templatecocvovviiiiiiiiieiciciciitc e 101
RAG chaint ASSMDBLYccovuvviuiiiieiiiiiiiiiiiiicciecees s 102
Conversational MEMOTYccocvvveeueueieisisiiiiiccceee et 102
DEPENLACTICIES ...t 103

TO O 103
CONCIUSION ..o 104
5. Implementing Agentic GenAl Systems with Human-in-the-loop.........cccceeurvererenenencnen. 105
INErOAUCHON. ..o s 105
SEIUCHUT@. ..ot 106
ODJECHIVES ..o 106
Architecting agentic GENATL SYStEIMSccucvuiiiiuciiiiiciiiciciicisecec e 106
Parallel PAEETTL.......c.cucveviiiiiciciciceccc e 106
Sequential PALLETTL c....c.c.cuvveveveiiiiiiiiccicee s 107
LOOP PALLCTTL oo 108
ROULEE PALECTTL oo 109
AGGTeGALOT PALLET Tt 109
NEFWOTK PALLETTL ..o 110
Hierarchical PAtterincovvvviiiiiiiicicicicsicccee e 111

Human-in-the-100p PAtterti.........cccvvveiiiniiiiiiiicicieieeciccccees e 111

Shared to0ls PALLCIN.........c.cucvvieiiiiiiiiicicicie e 112
Database with t001S PAtEETTL..........cccveueueieieiiiiiiiciccice e 113
Memory transformation USiNgG t00ISccceeveviviiicericicieeiiiiiccccce s 113
Planner-executor Pattermloovvvvveveveieieiiiiiiicicee e 114
Critic or validator PALEETTL.........ccovvieiicieieiciciciccccee e 115
NeQOLIALOT PALLCI N .. 116
Multimodal agent PALLETT..........ccvvvvvoviiiiiicieieiciccte s 116
Voting or CONSeNSUS PALLCIN..........cuvevicieiiiiieieieieiciictcice e 117
Supervisor-subordinate Patternc.ccvvveveiiicciceiecicce 118
Watchdog or 1ecOVery PALIEYTLcuvucececveieieiiiiccceee e 119
Temporal planner PAtLEIN.........cooovovvveveveveieieieiicecte e 120
Human-in-the-100pc.cccoovvvrumminininieiiiiiiccicce et 122
End-to-end human-in-the-100p RAG WOTrKfloOwccccoucuiiiiiniinicininiiiiciicicicenes 124
From HITL to multi-agent human-in-the-l0op RAGcccccceiiiiiniiiniiiciniciniicnes 124
Agentic AL vS. AT @@ents.........couoviiiiiiiiiiiccc 127
CONCIUSION ..ot 128
6. Two and Multi-stage GenAl SysStemsceeveeeerenenenenentnnneeeenessesssssssssee e ssssssssesens 129
INErOAUCHON. ..o s 129
SETUCHUTE. ..ot 130
ODJECHIVES ..vviiic s 130
Concepts of interactions in dense retrievals...........ccocoeeiiiiiiiiiiincnnccce 130
NO TECTACHON .ot 131
FUll THEETACHON ... 131
Late iNEFACHION «..cvvvevvvieieieicicece e 132
Multi-vector 1epreSentAtiONS.........cccoovvueuiueueieieieiiiiticicee s 133
Differentiation from late interaction architeCtUres.............ocovvvvvieeieiiiiiiiicceieeian, 134
Role of interaction models in two-stage RAG systems..........ccccoevreinniniiiccccncnnnn, 135
Interaction in the retrieval PRASE..............cccccvvveveviiiiiiicieiecciccce s 136
Reranking with various interaction models...........c.cccccuiiiiiiiininicininiiiccicaes 136
Integration into two-stage RAG ArchiteCtUres..........cveueveveivivviicciciccesisieieicccicies 137

Two-stage RAG architecture...........ccccucuiciiiiiiiiiciiiciciccccce s 138

XX

Stage 0ne dense 1etriCVAlS..............cveueueieieiiiiiiiiiccie e 138
Stage-two, reranking for SeMANLIC PrECISIONcvveveveveveiiiiiiiiicieieieieieiesscccee e 138
The strategic role of tw0-StAge AESINccvevvriviueieieieieiiiiiicceee e 138
Two-stage RAG vs. late iNteractioncccoevemurueeieieieiiiiiiiiceieeeeessccceie e 139
Capabilities of COIBERT and CoIPali..............ccoovveieieiiiiiiciciciciiiiiiccceeen, 139

Use of tw0-5tage RAGcocvoviviiiiiicieiciciccttccce s 139
Multi-stage RAG........coooiiicc s 140
Beyond t0-StAZe SYSLEMIS.........ccovvueuceeieieieiciiiiccicee e 140
Components of multi-stage RAGccovvvviviiciiiicieieieiciiticcccee e 140
Benefits of multi-stage RAGccocceueieiiiiiiiiiicicicceeectcccee e 141
Types of multi-stage RAGcccvuviviiiiiiiiiicicieieiccccccc e 141
Grading MeChaniSMSccceiiiiiiiiiiici s 143
Challenges and conSIAerAtionsvvevriiviieiiiiiieieisieieietescccee e 144
Token utilization in multi-stage RAG SYSteMISccvvevevevcviiiiiiciiicieiciciciicccee e, 144
GIAAING FYPLS .o 145
Implementation of multi-stage RAG workflow with routingcccccceecvicininicnnes 151
CONCIUSION ..ot 152
7. Building a Bidirectional Multimodal Retrieval System..........occeveveveverrnnrneeeeecnnnne 153
INErOAUCHON. ... s 153
SETUCHUTE. ..ot 154
ODJECHIVES . 154
Output-based classification of multimodal systems...........ccccovrreiiiiiicccccnnn, 154
Integration and design iMpPLICAtIONScccvvveveviiericieiciciciciccce s 155
Understanding a multimodal retrieval system..........cccoovvviiiicnccniicccce 156
Technical AYCHTEECEUTEcocvoveiiiicicicicie e 156
Applications and impliCAtions.............c.ccveveveiiieieieisiiiiiiiicccee s 159

Code implementation and explanation.............cccocoerieirniiiiniincc s 160
ROGUITEIENE ... 160
FIOMEON ..o s 163

Data direCtOry.....ccucueeieiiieiiiiiicccee s 166

The 1etrieVAl SYSEEML........vvvviiiicicieieieicicee e 166

LOAACTS.......oiiiiiicct s 167
Embedding UHSccvueveieiiiiiiiiiicccicice st 169
INdex DUILAETccvviiiiiiiiciiiiiiiiii s 169

Process to run the entire Code............cvveeniiiiiiiiiiicicieeescciccccee s 172

To do fOr the TEAderscccuiiiiiiciiciic s 172
CONCIUSION. ...ttt 173
8. Building a Multimodal RAG System........cvvevineceniierinineiniieinneeiscesnsensssensesensns 175
INErOAUCHON. ...t 175
SEUCHUTE. ...t 175
ODJECHIVES ..o 176
Implementation of generation ... 176
Architectural components and WOrKAlOWcccovvvveveicieiiiiiiiiiccceesece 178
GEMETALOT .t 180
Multimodal LLM-based recommender Systemcccocovvviiernnieininininncccceeennens 181
Leading architectures and eXamples..............cocvvvviiiiiiicicceisisisiiiiiccceesee s 182
Incorporate grading with OpenAlL...........cccccociiiiiiiiniiiiicicecee s 184
Import SEALEIMENES.....c.oveviiiii 186
Generative 1eSponSive GrAACYccevvevvicucucieieieieieicitccce e 186
Retrieval 1elevance Qradercoovvveeeieiiiiiiiiiiciceee et 187
Grading and generation Modelscocvveeeenieiiiiiiiiiceceeee e 189

Cloud LLMS fOr Gradingcccoeuviimmuminininiisiiiccciieeisc s 189
LLM-0S-0-JUAGE ..ottt 190
Rationale and functionality...............cccoevoivienieininiiiiiiccce e 190

TO O 191
CONCIUSION....uiiiiiiiii s 192
9. Building GenAl Systems with Rerankingeeeeenenenennneeeeeseessiestneeeeesennens 193
INErOAUCHON. ... 193
SEUCHUTE. ... 194
ODJECHIVES ..o 194

RETANKING ..ottt s 194

xxii

Reranking in information retrieval and RAG systemscccccovrreniiiniicncccncncnnnn, 195
Reranking in RAG PIPELINesccvvvviviiiiieieieiciciiiitcccce s 197
Reranking using cross-encoder in multimodal RAG ..o 198
Cross-encoder architecture in multimodal SettNgSccccccueiuvicininicciniciniciiicnes 198
Cross-encoders vs. late interaction rerankers............ccccvvvoveccveeeieiniiiiiecceiesenn, 198
Applications in multimodal 1etrieval...............ccovvvrvieeieieiiiiiiiicceee s 199
Commercial TeFANKETccovvviviiicieicieieicisc e 200
Recap of CroSS-e1COACTcvuvviveieieiiiiiiiiiciciccice e 200
Cross-encoders and their role in embedding................cccovvvveeniiiiiiccceann, 201
Multi-index embedding in RAG Systemscccoeriirininniiininiiccceeccces 202
Code implementation and explanation ..o 205
TO O s 208
SEHUP TNSEFUCHONS 1.ttt 209
CONCIUSION ..o 211
10. Retrieval Optimization for Multimodal GenAlL...........ieieinerereeerenenenensneeesesesesssenes 213
INErOAUCHON. ... s 213
SEIUCHUT@. ..ot 214
ODJECHIVES ..o 214
Retrieval optimization teChMIGUEScccciuiiiiiiciiiiiiiiicccccc s 214
Drawbacks retrieval SyStemscccooviiiniiiiiiiiiicccc s 215
Retrieval optimization techniques mitigating the limitations............cccccccocvecininicnnes 218
Multi-index embedding.............c.cooovoviiiieieiniiiiiiiiiiccce s 218
Modality-based routing for multimodal QUETIEsc.cccovvvvvivvovcrceiisisicicccicine, 218
QUETY XPATISION ovvvviviviieieiesescet ettt 219
Embedding normalizationccveueueininioiiiciciieieeeieicccccccee e 219
Hybrid 1€t71e0aL ...t s 220
5€01€ NOTMALIZALION ...t 220
Reranking with Cr0SS-eNCOACTS...........covivviurieiiieieiciiiiiccceee e 221
Prefiltering threSHOIAScccvvviiiiiiciiiiicieiciciciccce s 222
Adaptive index 1efresH...........ccvvvviviiuiiiiieieiicicccce s 223

Retrieval optimization teCANIQUES..............c.cvvuveieiiiiiiiiciciceeeeeccee s 224

GA implementation for optimizing moAalitycccoevvvvveeiniiiiiiiicceeeie, 228
EXPIANALION. ..ot 229
Multimodal RAG system with adaptive index refresh..............cccoovvvveeeneiniecccnnnnn. 229
One-time or scheduled index refresh SCriPt........ccvveeeiiviiiiiiiicciecciiccce 235
Enhancing multimodal RAG with adaptive refresh ... 236
Vector embedding pipeline and storage in QArant..............ccccovvvvcceennsnincccccnnnn, 237
Two-stage retrieval and multi-vector Yerankingcccovvvveeeieieiivivinccceeeein, 238
Context assembly and 1anguage gQeNeration..........ocwveevvevevveveeisieisiisiseccessiin, 238
Adaptive embedding refresh MeCHANISILc.ccovvruvveieieieiiiiiiiicceee s 239
INAexing DERAVIOTc.cuvveveieieiiiiiiicicicce s 239

TO O 239
CONCIUSION ..ot 240
11. Building Multimodal GenAlI Systems with Voice as Inputccceoeeeeuvueureeneennnnnnne. 241
INErOAUCHON. ... 241
SEIUCKUTE. ..ot 241
ODJECHIVES ..o 242
RAG beyond image and text RAG.........ccccoiiiiiiii s 242
CONCEPLS vttt 243
Integrating speech interfaces into RAG architecturecccocvucivicinciniicinicincnicnnes 244
Code implementation of the voice-enabled RAG systemcccecvueiuriciniicincinicnnes 245
TeCh SACK OVETVICTD ... 246
FIOMEN ..o s 246
Main voice-enabled PIpeline.............ccovvreuvieieieiiiiiiiiiicceecieccse s 248
CONCIUSION ..ot 262
12. Advanced Multimodal GenAl Systems..........cceveeeeerereninenininnieeeeessssssssssseeessssssssesens 263
INErOAUCHON. ... s 263
SEIUCHUTE. ..ot 264
ODJECHIVES ..o 264
The critical role of reasoning in generative Al SYStemMS..........cccceucuriuriccunicinicincinicnnes 264

From generation to deliberationcccevevevcccuiieieinieiiiiiiiicceee s 264

xXxXiv

Trust and explainability in Al SYSEEMIScovverucueieieiciiiiccceee e 265
Handling ambiguity and disambiQUationcccoveeeieieiiiiiinccesessieiesccicieienes 265
Multimodal integration requires [0gical COMPOSILIONcucvevevevrviviiicicieieicieiiccicicines 265
Prompt engineering and COT 1€ASONINGcvuvveveveiiiiiiiiirieieieieieiiieicciceieese e 266
Reranking and meta-reasoningccceeeveeeeieiniiiiiiiciiesssisiesescceeseessesessas 266
Learning generalizable StAtEIsccovvuvuvieieieiiiiiiicicicieieieeicitccee e 266
Human-AI collaborationcovvueururueieisisiiiiiiiiiciceeeiesesssss s 267
Foundation for Aentic Al............ccccccveeieiiiiiiiiiiiiiiiciceeccsce s 267
Reasoning in GenAl and their tyPes ... 268
Deductive reasoning in Al...........ccocceeeiininiiiiiiieieeieieitscccce s 268
Inductive 1easoning in Alcccoocvueureeieiniiiiiiiiiceee s 268
Abductive 1easoning it Alccccceueuririeiniiiiiiiiiiicee e 269
Analogical 1asoning it Alccoceueueueieieisiiiiiiiiiciee e 270
COMIMONSLNISE T@ASOMING ..ovvvvevivveieseieiciiiitctete ettt 270
CAUSAL TOASONINLG ...t 271
SPAIAL TRASONINLG ...ttt 272
TeMPOTAl TRASONINLGvvvevviieieieteeicet e 273
Mathematical TeASOMINGcceveveveiiviiiiiieieieieieictetcccee s 274
Tool-based reasoning and ReACt AGENEScccvveueveeieiciiiiiiiieieeeeiccee 275
Multimodal reasoning and fusion in Al SYSIEMS.........ccovevveieiviiiicccieieisieieiiccicines 277
About reasoning benchmarkccccccviiiiiiii e 278
CONCIUSION ..o 279
13. Advanced Multimodal GenAl Systems Implementationccceevevevueevnvuevernnnccnncncnne 281
INErOAUCHON. ... s 281
SEIUCHUTE. ..ot 281
ODJECHIVES ..o 282
Prompting techniques for reasoning in GenAlI systems.........cccccccuviricciricinicincinicnnes 282
Basic prompting teCHIIQUEScceueieiiiiieiiiiiicieee e 282
Z810-SHOt PYOMPEING...c.vovviviviieieieiciiiitccceie et 282
Few-shot Promplingccccovevviiicucieieinisieiiteicccieee e 283

Advanced prompting strategies for reasoning in GenAl SYstemscococvvcucucunn. 284

Architecture for reasoning at the reranking stage............cccceceueevicininincinincinicininicnans 286
Module: [I0AACTS.PYcvvueueeeieieieiciciiccce et 287
Module: embedding ULIS.PYcovovovieiiiieieisiciciititccce s 288
Module: index_DUIIACT.PY.......ccoveveviiiiiiiiicicieicieictt s 289
Module: 1eFranKer.pyccocvveeueieieieiiiiiicceee e s 289
Module: [anggraph_agent.pyfccccouvereueinieieiiiiiicicieiee s 290

Agentic characteristics of the langgraph_agent.py modulec.ccccovevvrunnnnn. 290
Agentic attributes and functionality.............cccoovevvviiiiiiicccneeccces 290

Architecture for reasoning at the recommendation stagecccceeeuecuvivciniciniinicnnes 293
THE AALASEL ... 293
Goal of the recommendation eNGINecoovvvveureeieieiiiiiiiceieeeeiece e 295

Final retrieval CONSHAINESoovvuvveieieieiiiciicicicee s 296

Modular codebase DYeaKAOTWcccvuvuvueieiiieiiiiiiiccee s 296
CONCIUSION ..o 300

14. Building Text-t0-SQL SYStemSccevuerernrieriireerinriiniiriisieeesieissesssseessssesssssessssseansns 301

INErOAUCHON. ... s 301

SEIUCHUT@. ..ot 302

ODJECHIVES ..o 302

Text-t0-SQL a hard problem...........ccoiiiiiiiiccc i 302

Understanding basic CONCEPLS........ccoviruiiiiiiiiiiiiiccic s 303

Exploration of real-world applicationsccccocverininniiiiiicccceccce 305

Key Challengesc.ccucuiuiiiiiiiiciciiciiicc e 307

Practical guidance on designing a text-to-SQL system..........ccccovovreiniiniccccinnnnn 311

Entity extraction using LLM and text-to-SQL system............cccccovvrrniinnncccccnennnn 317
ATCRItECHUTE QVETVIOTD ... 318

Enhance data accessibility and literacy............ccceocuviriciiiiciiicininicniccsiccccccaes 321

Performance metrics and best practices............cocooereuriiniiiiiniicccecce 323
Exact Match ACCUTACYuouvvvviiiiiiiiicicicieieiciett s 324
EXCCULION ACCUTACY ..vvvvviviiiiieieieieieictt st 324
Component-1evel ACCUTACYcoveveveririiiiiiiieieieieiccctc e 325

Query execUtion SUCCESS TALEc.cvvciiiiiiiiiiiiiiiiiiiiecs e 325

xxvi

Semantic equivalence and canonicalizationcccevvvveccceeeeiniiisccceee e, 326
Human e0alUALION.ccvuvveviiiiiiiiicciccees s 326
Latency and throughpuut EtriCSsccvvvveiurueiiieieiiiiiiicccieee s 326
Best practices for performance evaluation..............ccoeeeevevevivrceniesieiiiiiisccceeen, 327
CONCIUSION ...t 328
15. Agentic Text-to-SQL Systems and Architecture Decision-Making.........ccccceerueverervrucnene 329
INErOAUCHON. ... s 329
SEIUCHUTE. ..ot 330
ODJECHIVES ..o 330
Agentic text-to-SQL system for real-time retail intelligence...........c.cccccoevvvvicinnnnen. 330
Business challenge and problem statementcceevevevoiccneeseiciiiiiccceee i, 330
Architecture and code explanation of text-to-SQL system...........cccccceuecuviciniciniinicnnes 331
Step-by-step pipeline explanation ... 332
FOLACT SEYUCLUTE ... 333
ROGUITEIMEIES ... 334

SetUP TNSHUCHONS ..ottt 335
Understanding each PYthomn SCriptcccvevvviviiiiiciieiciciiiicccccesssaas 336
Main exeCUtion LAYeTccevevevviiiureeieieieiiicitccce e 336

AGENE TMOAULLS ... s 336

Core infrastruCture [AYEToceeueveveieieiiiicicieieiee e 337
Task-oriented MOAULESccceeueueieiiiiiiiiiiccice e 337
Frontend interfacecccoovvvcucueicinieiiiiiiiccceceee s 338

System setup and index iNTHALZALIONccvveveveveveiiiiiicieceee 338

Inner workings of the COAE ...t 338
Agent and t00] SUMIMATYccovvurueueieieieiiiiiicicee e 341
Output from the text-t0-SQL SYStEMcceuuiiiiiuiiiiiiiiiiciicicscec s 341
Detailed entity and database SUMMATYccccovereeieieiiiiiiiinieeeeieccce e, 343
Generated SQL QUETYcoovviuiucieieieieiiiiiccceceie et 343

SQL GUETY IAAE. ..ot 344

SUMMATY GIAAC ..ot 345

Solution to the initial problem statementcccoccueiiiiciiiiincnicncsccceieaes 346
CONCIUSION ..o 346
16. GenAl for Extracting Text from IMages.......c.coceuvueueririeiirinnnisncnisciiiisiisnessseseseseessssens 349
INErOAUCHON. ...t 349
SETUCHUTE. ..ot 350
ODJECHIVES ..ot 350
Three approaches to GenAl-based OCR...........cccoucuiiriiiiiciiiiciniiniciicicsececeseieaas 350
Shopping ASSISTANCE USE CASE..........cvvueueieieiiiiiiiiiiicieieieie et 353
OCR ON IMAGE.......vveveietiiiiiteee et b et 354
Building shopping ASSISTANCEc.ccccevvvvucuiueieieisiciiiitccicee e 355
ATCRItECHUTE QVTVIOTD ...t 355
Understanding the OUPUL...........cccvvumeieieieiiiiiiccceecccce s 361

OCR on a multimodal document.............cccoeviiiiiiiiiiii e 363
MiStral’s OCRcocuiiiiiiiiiiiiiiccc 364
The 1Zex 111 COMEEXT cuuumviiiiiiiiiiicicicie e 365
OCR i1 1€CIPE AAL Q... 366

TO O 369
CONCIUSION ..ot 369
17. Integrating Traditional AI/ML into GenAI WOrkflowcocvuvecmeuvercnrusecncnsencnsusecncnne 371
INErOAUCHON. ... 371
SEUCHUTE. ...t 372
ODJECHIVES ..vviiic s 372
CaSe STUAY .vvviiiiicccc s 372
Integrating the traditional model with GenAlL..........ccccccouccuiiiiiiniiinininiiicicccicaes 373
Initialization of these Bybrid SYSIEMScccvvvevviceriiiricieiciciciccce s 376
USE CASC....eeiiteetct ettt 377
Data characteristics and preprocessingcoeweeeieveveveceieieisisiisissccessininns 377
Baseline model development and evaluationccoevvveeieiiiiinicceeininnn, 377

Stacked ensemble learning Approachcoceeevcievcvicccieieieiieiicccee e 378

Purpose of the LLM i1 thiS SEHUPc.cuvuvueieiiiiiiiiiicicicieieieiseiccccseeeessas 378

XXUI1L

Wrapping XG boost model into LLM........c.ccccoiviiiiiiiiiicccccccies 379
RUTL OFAET .ottt 381

Code TMPIemMeNtAtION.ccocvcvvivieiciciciiiiiitcise s 383
Model training Pipeline..............ccccocovviciiiviiiiiciciiiiiiiiiiiiice et 383
FastAPIL Serving IAYETccocovviiiiiiiiiiiiiciiiiiiicicicis e 385
Tool wrapper for FAstAPI INference.............ccccocoiviviviviciciciciciiiiiiiicicicccccccieea 385
LangChain t00l 1eQISHALIONccccvcvvuviiiiiciiiiiiiiiiiiieccc s 386
Agent orchestration with Mistral 0ia OUAMAccoevevviiieriiiiieiieeiie 386
Comparative overview of ML model integration in GenAl workflows 387
TO 0 ettt h et h bbb bbb et b be e 388
CONCIUSION ...ttt b sttt et b et e e b et et e bt be st e bt e e eneeseneene 389
18. LLM Operations and GenAlI Evaluation Techniquesccoceevevuvueerenueesnrecernnrcenncnennnns 391
INETOAUCHON. ¢ttt b ettt b et be e 391
SETUCEUTE. ..ttt bbbttt ettt et b s b e bt e bt e bt et et et enaenten 392
ODJECHIVES ...ttt 392
Importance of Ops in production-grade GenAl applications...........ccccccceiiiiiinininnnes 392
Comparing LLM and RAG evaluations...........ccccccceeiiiviniiiniiciiiniinicccccccinienas 393
LLM @UAIUATION ..ottt ettt 393
RAG CUAIUATION ..ottt ettt 394
Importance of distinCtiON..........ccccccovviiiiiiiiiiiciiiicicc s 395
Evaluation as the core of GENAI OPsccccoveeueieeieiiiiiiicicciccieieiessccee e 395
Ensuring output quality at SCale.............cccccooovviviiiviiiciciiiiiiiiiiiiiiiccccca 395
Monitoring drift and hallucCinAtions ... 395
Evaluating retrieval quality for preemptive debuUggingccccocevvvevviviviiiniciccninennnn 396
Supporting version control and traceabilityccoccovvivvvvivveieneiiiiiicceee e, 396
Feedback loops and self-healing SYStemsccccecviiiniciiinisiciciccciiiciceee e 396
RAGODPS .ttt 397
During developrment............cccvvviviiicucieieieicieiiccccee e 397
Identification in RAGOps during development...............ccccccovovvivivivvnccicccannnnnne 398
Benchmarking in RAGOps during developmentcccvvvevvviovivicecnininnnnnn, 398

Identify post-AevelOPMEntccveveveieieieiiiiiicicice s 401
Benchmarking in RAG systems post-Aevelopmentccvveevvievvvicecnieininnnn, 402
ContinUOUS MONITOTING ...cuvvvieieiitiicic s 404
Continuous monitoring in live RAG SYSEeMSccccovevvveveieieieeiiiciiiicieeieccan 404
Key metrics to monitor in RAGOPSccovivviciiiiiiieieiiiiictitcieeee 404
Techniques and tools for continuous MONItOTINGcccccucrioiiieieisinicciciiieieiesenas 405
Alerting, dashboards, and anomaly detectionccccevvivvvvccccessiiiiicccicnna, 405
Feedback loop and self-healing SYStemis..........cccoovvvvurmereieinieiiiiiiiiccece s 406
Observability platforms..........ccoevviiiiicii s 406
Core 0bservability platfOrms.........cocvveieieiiieiiiiiiciee e 406
RAG-specific evaluation [IDFaries............ccccweeureieiniiiiiiiciiceieesieieicciceee e 407
Auxiliary tools and ecosystent integrations...........ccowveeeieiriivivivccesessiesescccecnenas 407
Graph-enhanced RAG-based recommendation SyStemcccceceuecuricinicincinicnnns 408
Data ingestion Pipelinecccooveceueieisisiiiiiiiiieiese et 409
Retrieval and recommendation pipeline................cccovvvvveveeienisiiiiiiiicceseeesissans 409
Agentic RAG design and multi-tool retrieval in the System ... 410
AGENtiC CONHTOLLOOP ...t s 410

Three complementary retrieval t00lSccceevevevcicciiiicieeceiccc e, 411
Operational role of the AZENtccovvvvcucucieieieiiiciicccc e 411
Operational risk analysis and monitoring Metrics........oowvveeeveverivirivcceceeieienn, 412
Comparison of various Ops in modern software development............ccccccevrrnnnnnn. 412
Installation of MLAOWcceuiiiiiiiiccc s 414
Observability PIPeline............cvvwvveieieiiiiiiicicicieieieit e 415
APPTOACH T s 415
APPTOACH 2. s 418
Troubleshooting MLflow using local filesystem structure............cccccvvcvvicicininninnnnes 420
CONCIUSION ...t 422

CHAPTER 1

Introducing New Age
Generative Al

Introduction

This chapter sets the stage for mastering new age generative AI (GenAl) systems by introducing
essential concepts and foundational technologies. We begin by exploring the difference between
retrieval systems and generation systems, followed by an in-depth look at vector databases,
search algorithms, embedding techniques, indexing, and reranking, all critical for building
intelligent, efficient Al solutions. Key reliability mechanisms, such as reflection and guardrails,
are discussed to ensure outputs remain robust and aligned with user intent.

We then dive into advanced prompting methods like chain of thought (CoT) to guide Al
models through structured reasoning processes. Moving into agentic Al, the chapter covers
agents, tools, reasoning, planning, and action execution, expanding into the design of multi-
agent systems capable of complex, collaborative tasks. A comparative overview of large
language models (LLMs), large vision models (LVMs), and emerging large action models
(LAMs) is provided, along with practical insights into local model deployment and graphics
processing unit (GPU) infrastructure planning.

Further, we introduce speech technologies, including automated speech recognition (ASR) and
generation, and explain the critical role of memory management in agent-based architectures.
Finally, we present industry standards like Model Context Protocol (MCP) and differentiate
the evolving responsibilities of a GenAl developer vs. a GenAl engineer, preparing readers for
advanced system design.

2 Building Multimodal Generative Al and Agentic Applications

Structure

This chapter covers the following topics:
e Opverview of generative Al
e Retrieval system
e Generation systems
¢ Understanding where generation systems excel
e Retrieval-augmented generation
¢ Orchestration in Al systems
e Tokens in Al systems
e Vector database
e Reranking
e Bi-encoders vs. cross-encoders
e Guardrails
e Agents
e Model Context Protocols

Objectives

This chapter aims to equip readers with a comprehensive understanding of the key building
blocks essential for designing and deploying modern GenAl systems. By exploring concepts
such as retrieval and generation systems, vector databases, embedding techniques, advanced
prompting strategies, agentic architectures, and multi-agent collaboration, readers will gain
a strong foundation for building intelligent, scalable Al solutions. Additionally, the chapter
introduces critical topics like local model deployment, GPU infrastructure, speech processing,
memory management in agents, and industry standards like MCPs. These foundational
elements are crucial for advancing toward multimodal, reliable, and production-ready Al
applications.

Overview of generative Al

The evolution of generative models represents one of the most significant paradigm shifts in
Al In the pre-generative pre-trained transformers (GPTs) era, GenAl was shaped by powerful
techniques such as Boltzmann machines, variational autoencoders (VAEs), generative
adversarial networks (GANs), and autoencoders. These models achieved groundbreaking
results by generating unstructured data like images, audio, and even text. For instance,
GAN:Ss revolutionized realistic image synthesis, while VAEs enabled probabilistic generative
modeling of complex data spaces, including speech and document generation.

Introducing New Age Generative Al 3

While impressive, these earlier systems generally focused on single-domain generation with
limited ability to reason, plan, or generalize across tasks. They lacked the rich contextual
understanding, dynamic reasoning, and task-driven flexibility that define modern Al
experiences.

The true paradigm shift occurred not directly with GPT models, but with the introduction of
the transformer architecture itself in 2017 (in the seminal paper Attention Is All You Need by
Vaswani et al.). The transformer introduced the concepts of self-attention, parallel processing,
and positional encoding, enabling models to scale massively in both size and capability, far
beyond the limits of traditional recurrent neural networks (RNNs), long short-term memories
(LSTMs), or convolutional neural networks (CNNs) based generative models.

Building on the transformer foundation, GPTs ushered in the era of open-ended generation
models capable of not just recreating data but performing tasks like conversation, reasoning,
summarization, code generation, and multimodal synthesis. The modern GenAlI systems now
exhibit semantic awareness, dynamic problem-solving, and multimodal understanding across
text, images, and speech.

Several key advancements define this new age, which are as follows:
e Massive pre-training on diverse, heterogeneous datasets.

e Scaling laws showing predictable improvements with more parameters, data, and
compute.

¢ CoT prompting techniques for guided reasoning.

e Agentic Al architectures where models not only generate but also reason, plan, and
act.

e Multi-agent systems collaborating toward complex goals.
e Multimodal generation across text, vision, and audio modalities.

e DPrivate and local deployments driven by improvements in GPU infrastructure and
efficient models.

Note: The scope of this book is focused exclusively on new-age GenAl systems. If
you seek to explore the foundations of older generative models, including Boltzmann
machines, autoencoders, VAEs, and GANSs, you can refer to another book authored by
me and my co-author, titled '"Learn Python Generative Al: Journey from Autoencoders to
Transformers to Large Language Models" (published by BPB Publications). It provides
a detailed walkthrough of the classical generative modelling journey leading to today's
cutting-edge systems.

In this book, we move beyond classical generation, focusing on designing, building, and
deploying reasoning, planning, and action-oriented GenAl—the systems that are now
transforming industries, enterprises, and everyday experiences. Understanding this transition
is key: what started as data mimicry has evolved into intelligent, multimodal agents capable of
augmenting and automating human thought itself.

4 Building Multimodal Generative Al and Agentic Applications

While generative models have evolved to create rich, human-like outputs, not all Al solutions
rely solely on generation. In fact, many of the most powerful Al systems today combine retrieval
with generation to ground their outputs in real-world information, improve reliability, and
reduce hallucinations.

Before exploring generation strategies, it is essential to first understand retrieval systems,
the backbone of how Al finds, filters, and brings relevant knowledge into the conversation.
Retrieval forms a critical pillar of modern Al infrastructure, supporting tasks ranging from
search engines and recommendation systems to advanced retrieval-augmented generation
(RAG) pipelines.

In the next section, we will explore what retrieval systems are, how they differ from pure
generative models, and why they are indispensable for building accurate, scalable, and
production-grade Al applications.

Retrieval system

GenAl systems today are celebrated for their creativity and reasoning abilities, but behind
many of these intelligent behaviors lies a strong foundation built on retrieval mechanisms.
Retrieval is often the hidden engine that allows AI to ground its outputs in real-world
knowledge, find relevant facts, and maintain coherence across conversations or tasks. To truly
appreciate how retrieval has become such a critical pillar of modern Al it is important to first
understand how it evolved, from simple keyword matching to sophisticated, learning-driven,
and memory-augmented techniques.

Prior to understanding modern retrieval systems, it is helpful to trace their evolution briefly,
which is discussed in the following table:

Year Milestone Description

Term frequency-inverse document

1970s-2000s | frequency (TF-IDF), Best Matching Barly keyword-based retrieval methods

focused on matching exact terms.

25 (BM25).
2020 Dense passage retrieval (DPR) Introduced ('iense embeddings to semantically
match questions and documents.
2021 Hybrid retrieval Combined sparse (BM25) and dense (DPR)

methods to improve robustness.

Tight integration of retrieval with generation

2020-2022 | RAG models to enhance grounding.

In-context learning retrieval, Dynamic, reasoning-driven retrieval

2023+ memory-augmented retrieval. embedded inside LLM workflows.

Table 1.1: Historic timelines of retrieval systems

Introducing New Age Generative Al 5

With the preceding background, given in Table 1.1, in mind, it becomes clear that retrieval is no
longer a simple lookup process; it has evolved into a dynamic, intelligent layer that actively
augments the reasoning capabilities of Al systems. In the following sections, we will explore
how retrieval systems work, the key components that make them powerful, and how they
integrate seamlessly with generative models to build reliable, context-aware Al applications.

The foundation of modern retrieval systems can be traced back to early innovations like
DPR, introduced by Facebook Al Research (now Meta Al) around 2020. DPR was a major
breakthrough compared to traditional sparse retrieval methods (such as TF-IDF and BM25)
because it introduced dense vector representations for both queries and documents. This
allowed semantic retrieval, finding information based on meaning rather than relying purely
on keyword overlap.

Dense retrieval marked a major turning point: models could now encode the meaning of a
query and a document into a shared embedding space where similarity could be computed
efficiently. Instead of matching exact words, dense retrieval matched concepts and ideas.
However, early dense retrievers still had limitations: they sometimes retrieved irrelevant
passages due to coarse semantic matching, and scaling them to millions or billions of
documents required solving difficult engineering challenges around efficiency and latency.

Sparse retrieval

Sparse retrieval methods like TF-IDF and BM25 rely on matching exact keywords and term
frequency statistics. While older, they remain highly effective in cases where precision is critical
and queries are closely tied to specific terminology, such as in legal document search, scientific
literature, and enterprise document retrieval, where exact matches matter more than general
semantic similarity. Sparse retrieval also scales very efficiently with traditional inverted index
techniques and remains a strong baseline in many real-world search systems.

Dense retrieval

Dense retrieval methods, introduced with models like DPR and Approximate Nearest
Neighbor Negative Contrastive Learning for Dense Text Retrieval (ANCE), marked a
major shift from sparse term-matching techniques (e.g., BM25) toward semantic vector-based
retrieval. Dense retrievers excel when dealing with open-domain search, ambiguous queries,
or when synonyms and paraphrases are common, for example, in customer support bots,
multilingual retrieval, or semantic frequently asked questions (FAQs) matching. Dense
retrieval allows systems to understand the intent behind a question, even when the exact
words differ between the query and the document. The following figure shows the basic flow
of semantic retrieval using a vector database:

6 Building Multimodal Generative Al and Agentic Applications

!
—6— =

Embedding Model Chunk Document

Vectorsearch

fa® :]
Result Results
Vector DB with

Vector
Embeddings

Figure 1.1: Basic flow of semantic retrieval using a vector database

Note: To maintain clarity and simplicity, this figure illustrates document chunking and
embedding as part of the overall RAG process. In practice, these steps—chunking and
embedding of documents- are performed offline during the indexing phase and not during
real-time query execution. This simplification applies across all figures and workflows
presented in the chapters of this book.

The following figure illustrates the offline phase of a RAG pipeline, where raw documents
are first processed using language chunking tools (e.g., Llama-based parsers or LangChain
utilities) to divide them into manageable segments. These chunks are then passed through an
embedding model, such as OpenAl’s embedding API, to generate dense vector representations.
The resulting embeddings are stored in a vector database, forming the searchable index that
powers downstream retrieval during real-time query execution. This preprocessing step is
critical to enabling fast, scalable, and semantically rich document retrieval in multimodal or
LLM-based applications.

>

@ Embedding Model

Document Library |

—_—)

Vector DB with
Vector
Embeddings

Figure 1.2: Offline document indexing and embedding workflow

Reflecting on the evolution, today’s retrieval systems have dramatically advanced beyond the
early DPR architecture:

Introducing New Age Generative Al 7

e Hybrid retrieval: Modern systems increasingly combine sparse and dense retrieval
(e.g., BM25 + dense embeddings) to balance recall and precision, especially valuable
in long-tail queries or domain-specific knowledge bases.

e Multi-vector representations: Advanced methods like ColBERT (late interaction
models) encode multiple vectors per document rather than a single one, improving
retrieval accuracy without sacrificing too much speed.

e Retriever-generator fusion (RAG systems): Retrieval is no longer a standalone step;
it is now tightly integrated into the generation pipeline. Models like RAG retrieve
documents dynamically during inference and condition the generated output,
improving factual accuracy and reducing hallucinations.

e Memory-augmented retrieval: Agentic Al systems use episodic memory, blending
external document retrieval with internally learned knowledge to continuously adapt
and improve over time.

¢ Learning-to-retrieve (LTR) and in-context retrieval: Some newer architectures like
Retro and RePlug move beyond static indexes, enabling the model itself to learn
retrieval strategies during inference, deciding what to retrieve based on the reasoning
context dynamically.

Additionally, vector database technology has matured rapidly. Tools like Facebook AI
Similarity Search (Faiss), Milvus, Qdrant, Azure Al Search, and Pinecone offer scalable, high-
speed vector search, supporting billions of embeddings with approximate nearest neighbor
(ANN) algorithms, metadata filtering, and hybrid retrieval capabilities—all critical for
powering modern enterprise-grade RAG systems.

It is crucial to recognize that retrieval today is no longer just about fetching documents. It
has become an intelligent augmentation mechanism, involving filtering, reranking, reasoning,
and dynamic knowledge grounding. Retrieval is evolving from a backend lookup service into
a frontline reasoning component of next-generation Al

Thus, understanding retrieval deeply, not simply as a search technique but as an intelligent
augmentation strategy, is essential for building reliable, scalable, and goal-driven new-age
GenAl applications.

Retrieval systems are typically evaluated based on metrics like recall@k, precision@k, and Mean
Reciprocal Rank (MRR), which measure how effectively the system retrieves relevant documents
among the top results. We will cover retrieval evaluation in greater detail later, but for now, it is
important to remember that retrieval quality is judged by both accuracy and ranking efficiency.

Generation system

As we have seen, retrieval systems focus on finding the most relevant existing information.
However, many real-world tasks demand more than just retrieval—they require creation,
reasoning, and original synthesis. This is where generation systems come into play.

8 Building Multimodal Generative Al and Agentic Applications

In this section, we will explore what generation systems are, how they operate, and the core
techniques that power them. We will discuss different types of generation tasks, such as text,
image, and audio creation, and understand key mechanisms like autoregressive modeling,
diffusion models, and sampling strategies. Additionally, we will cover important concepts like
temperature control, prompt design, and the balance between creativity and factuality.

We will also examine the typical challenges faced by generation systems, such as hallucination,
coherence issues, and safety risks, and highlight where these systems truly excel, especially
in tasks that demand open-ended creativity or complex problem-solving. Finally, we will
briefly introduce how retrieval and generation are increasingly being combined in modern Al
architectures to build more grounded and intelligent systems.

Let us begin by understanding the fundamental nature of generation systems and how they
differ from purely retrieval-based approaches.

Generation systems are Al models designed to produce new content, rather than simply
retrieve it. They can generate text, images, audio, code, and even multimodal outputs by
learning complex patterns from training data. Unlike retrieval, which surfaces information
that already exists, generation enables models to compose new sentences, invent new images,
and solve new problems dynamically at inference time.

Modern generation systems are typically large-scale neural networks or LLMs trained with
billions of parameters on massive datasets across multiple domains. The following figure
shows the types of LLMs and generation models:

= - =)

Large Language models

(o ety
o]

Large Action models

=
]~

Large Vision and Language models

Figure 1.3: Types of LLMs and generation models

Types of generation systems

GenAl systems span multiple modalities, each designed to create content such as text, images,
or audio based on user input, showcasing the versatility and power of modern machine
learning (ML) models. Let us look at the types of generation systems:

Introducing New Age Generative Al 9

Text generation: Models like GPT, Llama, and Claude specialize in generating coherent
paragraphs, answering questions, summarizing articles, translating languages, or
even writing poetry and code. They are autoregressive, meaning they predict the next
token based on previous tokens—enabling them to build long, meaningful sequences
word by word.

Image generation: Models like DALL-E, Stable Diffusion, and Imagen generate images
from text prompts (text-to-image generation). These systems rely on techniques like
diffusion models or GANSs to iteratively create realistic images from random noise,
conditioned on user instructions.

Audio generation: In audio generation, models like Whisper (for ASR) and VALL-E
(for speech synthesis) produce human-like speech or even create music. These models
learn representations of sound waves and either recognize speech (ASR) or generate
audio based on text inputs.

Core techniques behind the generation are as follows:

Language models: Language models are trained to predict the next word (token)
given a previous sequence, and so they are called autoregressive models, as explained
in Figure 1.3. Large models like GPT-3/4/03, Llama, or Claude learn contextual
relationships and world knowledge through self-supervised learning, enabling
diverse generation tasks such as answering questions, summarizing documents, and
creative writing.

Vision models: Models like DALL-E and Stable Diffusion apply transformer-like
architectures to image patches or latent representations, allowing text-to-image
generation. They capture the structure, style, and content of visual elements in latent
spaces.

Diffusion models: Diffusion models start with random noise and iteratively denoise
it to create a realistic sample. Popular for generating high-fidelity images (e.g., Stable
Diffusion, Imagen), they have also been adapted for audio and even 3D model
generation. Diffusion models are being actively adapted for language tasks, though
they are still less mature and less dominant than transformer-based models (like
GPT). The field of language diffusion models is rapidly evolving, and several research
efforts have shown that diffusion-based generative models can be competitive with or
complementary to autoregressive language models.

Autoregressive generation

In autoregressive models (like GPT), each output token is generated one at a time, conditioned
on previously generated tokens. This sequential token-by-token generation allows models
to produce highly coherent outputs, but can also lead to error accumulation if not managed
carefully. The following figure explains how LLM generates in an autoregressive manner (one
token at a time):

10 Building Multimodal Generative Al and Agentic Applications

Text Input

"Today, 'is a beautiful day
outside.”

s A

Tokens

['Today", "is", "a, "beautiful’
day, "outside."."]

Token IDs

2035, 2003,1037, 3376, 215
outside, 1012

Language Model

Vector Representations

Figure 1.4: LLM generation in an autoregressive manner (one token at a time)

The following are the temperature and sampling strategies:

e Temperature: Controls the randomness of the generation. Lower temperature | more
deterministic and factual outputs. Higher temperature | more creative and diverse
outputs.

e Top-k sampling: Limits the next token choice to the top-k most probable tokens.

e Top-p (nucleus) sampling: Selects from the smallest set of tokens whose cumulative
probability exceeds top-p.

Tuning these parameters allows fine control over creativity vs. precision in Al generation.

Prompting strategies

Prompts are critical for steering the behavior of generation systems. Advanced prompting
techniques like CoT enable multi-step reasoning by encouraging models to explain their
thought process before answering. We will explain these in more detail in the next section.

Introducing New Age Generative Al 11

Understanding where generation systems excel

Generation systems are particularly powerful in the following:
e Open-ended creativity tasks (storytelling, image creation, poetry, coding).
e Complex reasoning and problem-solving beyond retrieval capabilities.
e Personalization and dynamic response generation (chatbots, educational tutors).

e Bridging gaps where no pre-existing data exactly fits the query.

Combining retrieval and generation

While generation systems are incredibly powerful at creating new content, they sometimes
struggle with factual accuracy, up-to-date knowledge, and grounding their outputs in real-
world information. To overcome these challenges, modern Al architectures increasingly
combine the strengths of retrieval and generation, giving rise to a powerful paradigm known
as RAG.

In the next section, we will explore how RAG systems work, why they are critical for building
reliable AI applications, and how they seamlessly integrate retrieval and generation into a
unified, intelligent workflow.

Retrieval-augmented generation

RAG is an advanced Al architecture that combines retrieval and generation into a unified
workflow. Instead of relying solely on a model's internal knowledge (which may be outdated
or incomplete), a RAG system first retrieves relevant external information and then generates
an answer conditioned on that retrieved content.

RAG emerged to address key challenges faced by pure generation models, which are as
follows:

¢ Hallucination: It sometimes generates fabricated, plausible-sounding but incorrect
outputs.

e Stale knowledge: Pre-trained models have a static knowledge base (cutoff dates).

e Groundedness: Users often demand outputs linked to verifiable, real-world
information.

RAG bridges these gaps, making outputs more accurate, grounded, and up-to-date.

RAG working

A RAG system typically involves two major steps, which are as follows:

1. Retrieval step: Given a user query, the system first retrieves the top-k most relevant
documents or chunks from an external knowledge base (e.g., a vector database).

12

Building Multimodal Generative Al and Agentic Applications

2. Generation step: The retrieved documents are passed as context to a language model

(LLM), which generates the final answer conditioned on the retrieved information.

Thus, the model is not generated from memory alone; it is reading first, then reasoning.

Architecture of a basic RAG pipeline

The following list outlines how a basic RAG pipeline looks like:

Query understanding: The input query is processed, optionally rephrased or
expanded, to optimize retrieval.

Retrieval: A dense or hybrid retriever fetches the most relevant documents from a
vector database or search engine.

Context preparation: Retrieved documents are selected, truncated, chunked, and
formatted to fit within the LLM's input context window.

Generation: The LLM is prompted with both the original query and the retrieved
documents to generate a grounded, contextually rich response.

Output delivery: The model's final response is returned to the user.

Types of RAG architectures

There are many different types of RAG architectures evolving today, depending on how
retrieval and generation are orchestrated. However, to keep the scope focused, the following
are the two most common and practical ones:

Single-stage RAG:
o Asimple pipeline: retrieve | generate.
o Used when retrieval quality is high and latency needs to be minimal.

The following figure shows a single-stage RAG architecture:

Embedding Model

N —_—
—} —_—
1D E_— f—

Chunk Documents

) = &
..‘ m Generates results
'.‘ m Vector search

1 Result Results

Vector DB with
Vector
Embeddings

Figure 1.5: Single-stage RAG architecture

Introducing New Age Generative Al 13

e Two-stage RAG:
o Retrieval | reranking | generation.

o Afterinitial retrieval, a second model (e.g., cross-encoder) reranks documents to
improve the quality before passing them to the generator.

o Reduces hallucination by focusing the generation only on the most relevant
documents.

The following figure shows a two-stage RAG architecture:

[~

]}

<J

Embedding Model
Input Guardrails € Chunk Document

$5F

) B BB
0 o— | A%, i
00 o—]

099
'.‘ Vector search Reranker Reranked
t Result
Vector DB with

Results
Vector

Embeddings

+ @3

Top K results

Output Guardrails

1
=¥ @

Generates results

Figure 1.6: Two-stage RAG architecture

Iterative RAG

The following are the two iterative RAG:
e Retrieval and generation happen across multiple turns.

e The model can retrieve additional documents dynamically if the first batch is
insufficient, refining the answer step-by-step.

Vector databases and RAG

Vector databases are critical infrastructure for efficient RAG systems.

e Purpose: They store document embeddings and enable fast semantic search based on
vector similarity.

e Examples: Faiss (Meta), Qdrant, Milvus, Pinecone, Weaviate.

14 Building Multimodal Generative Al and Agentic Applications

ANN algorithms are used for scalability, finding close enough vectors quickly rather than exact
matches, enabling real-time retrieval over millions or billions of documents.

Vector stores also allow metadata filtering (e.g., date, author) and sharding for distributed
retrieval, essential for scaling enterprise RAG systems.

Prompt engineering for RAG

How the retrieved content is formatted and fed into the LLM significantly affects output
quality.
Key techniques include the following:

¢ Chunking: Breaking large documents into smaller pieces to fit multiple passages into
the prompt.

¢ Windowing: Sliding a fixed-size window over documents to capture local context
around keywords.

e Context management: Selecting the most relevant chunks without exceeding the
model’s token limit.

Well-constructed prompts ensure the LLM focuses on the most important information during
generation.

Advanced RAG techniques

As RAG systems evolve, advanced techniques are being developed to enhance retrieval
quality, improve response accuracy, and enable more context-aware generation. The following
are some of the advanced RAG techniques:

e RAG with reranking;:

o Use a reranker (like a cross-encoder) to evaluate and reorder the retrieved
documents based on fine-grained relevance scoring before generation.

o Improves precision without significantly increasing retrieval time if optimized
properly.
e Memory-augmented RAG:

o Retrieval is not only from static knowledge bases but also from episodic
memories-storing past conversation snippets or learned experiences.

o Enables dynamic, personalized, and context-aware responses in multi-turn
dialogue systems.

e Multimodal RAG:

o Extend RAG to retrieve both text and images (or videos, audio).

Introducing New Age Generative Al 15

o Example: In a medical assistant role, retrieve x-rays and patient notes together,
feeding both into a multimodal model like GPT-4V or Flamingo.

Applications of RAG

RAG systems have rapidly gained adoption across industries. Let us understand its
applications:

e Enterprise chatbots: Customer service bots grounded in company knowledge bases.

e Document QA systems: Answering queries from large corpora like research papers,
legal documents, or technical manuals.

e Knowledge management: Organizing and dynamically accessing enterprise
knowledge in real-time.

e Personalized Al assistants: Tailoring responses based on user-specific documents,
emails, notes, etc.

In every case, RAG ensures the Al system produces reliable, verifiable, and grounded outputs.

Orchestration in Al systems

As Al systems become increasingly complex, especially with the rise of RAG and agentic Al
systems, the need for intelligent orchestration has become critical. Orchestration refers to how
different components, such as retrieval engines, language models, memory modules, and
external tools, are managed, sequenced, and coordinated dynamically to achieve a specific goal.

Unlike traditional single-call LLM applications, RAG systems and agentic systems involve
multi-step reasoning and dynamic decision-making, requiring sophisticated orchestration
frameworks.

Orchestration in RAG systems
In RAG systems, orchestration involves the following:
¢ Query understanding: Preprocessing user queries before retrieval.

¢ Document retrieval: Interfacing with vector databases (e.g., Faiss, Qdrant, Pinecone)
to fetch top-k relevant documents.

e Context preparation: Chunking, selecting, and formatting retrieved documents to fit
within the LLM’s context window.

e Prompt construction: Dynamically inserting retrieved knowledge into well-structured
prompts.

¢ Response generation: Using the LLM to generate outputs grounded in the provided
documents.

e Post-processing (optional): Filtering, reranking, or verifying model outputs.

16 Building Multimodal Generative Al and Agentic Applications

Frameworks like LangChain, Llamalndex, and Haystack specialize in orchestrating these
steps automatically, making it easier to build scalable and production-ready RAG pipelines.

The following figure explains how LangChain is orchestrating the entire RAG process:

e— = [E

Embedding Model Chunk Document

o —y=
EEl = >§ »EXE
0e8 Co o—] <28,
' ‘ m Vector search Reranker Reranked
m Results Results
Vector DB with
Vector l
Embeddings

g +
Top K results

¥
@

Generates results

Figure 1.7: The fat lines are orchestrated by LangChain or similar orchestrators

Good RAG orchestration ensures the following:
e Minimal latency
e High retrieval quality
e Tight coupling between retrieval and generation

e Robust handling of token limits and memory

Orchestration in agentic systems

In agentic systems, orchestration becomes even more dynamic.

An agent is an Al entity capable of the following:
e Reasoning about a task.
¢ Choosing actions (e.g., tool usage, API calls, retrievals).
e Executing actions step-by-step.

e Reflecting and adjusting its plan dynamically based on intermediate results.

Agentic orchestration involves the following;:

e Tool selection: Deciding which external tools or functions to call based on the current
goal.

