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Preface

The machine learning revolution is transforming industries across the globe, much like the
advent of electricity once did. As organizations increasingly rely on data-driven insights
and intelligent automation, the demand for skilled machine learning professionals who can
harness the power of cloud computing has never been greater. Amazon Web Services has
emerged as the leading platform for building, deploying, and managing machine learning
solutions at scale.

This book is designed to be your comprehensive guide to mastering machine learning on AWS
and successfully passing the AWS Certified Machine Learning - Specialty exam. It bridges
the gap between fundamental cloud computing knowledge and advanced machine learning
expertise, taking you on a journey from understanding basic concepts to building production-
ready ML solutions.

Throughout this guide, you will gain hands-on experience with essential AWS services,
including Amazon SageMaker, AWS Glue, Amazon Kinesis, AWS Lambda, and many others.
The book is structured around the four key domains of the AWS ML Specialty certification,
that is,data engineering, exploratory data analysis, modeling, and machine learning
implementation and operations. Each chapter builds upon previous concepts while providing
practical, real-world examples that you can apply immediately.

This book is intended for aspiring machine learning specialists, data scientists, data engineers,
cloud architects, and professionals seeking to validate their expertise in AWS machine
learning technologies. Whether you are beginning your machine learning journey or looking
to formalize your existing knowledge, this guide will equip you with the skills and confidence
needed to excel in the rapidly evolving field of cloud-based machine learning.

With this book, you will not only prepare for certification success but also develop the practical
skills necessary to drive innovation and make a meaningful impact in your organization
through the power of AWS machine learning.

Chapter 1: Creating Data Repositories for Machine Learning- This chapter establishes the
foundation for any ML project by exploring how to identify diverse data sources and select
appropriate storage solutions on AWS. The chapter covers databases, Amazon S3, Amazon
EFS, and Amazon EBS, providing best practices for data repository design and integration
strategies that ensure your data infrastructure can support robust machine learning workflows
from simple batch processing to complex real-time analytics.
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Chapter 2: Implementing Data Ingestion Solutions- This chapter discusses the critical
process of moving data into your ML pipeline, covering both batch and streaming data
ingestion patterns. You wi'll learn to leverage Amazon Kinesis, Amazon EMR, AWS Glue,
and other AWS services to orchestrate and automate data pipelines, including scheduling and
managing complex data ingestion jobs for various data types and volumes across different
organizational needs.

Chapter 3: Transforming Data into Insights — This chapter focuses on converting raw data
into formats suitable for machine learning analysis. The chapter explores ETL processes using
AWS Glue and Amazon EMR, handling ML-specific data transformations with MapReduce,
Apache Hadoop, Spark, and Hive, while providing optimization techniques to prepare data
for various ML algorithms and ensuring scalable transformation workflows.

Chapter 4: Data Sanitization and Preparation- This chapter addresses the crucial task of
ensuring data quality and readiness for modeling. You will learn to identify and handle
missing or corrupt data, implement data cleaning and preprocessing techniques, and apply
normalization and scaling methods. The chapter emphasizes data augmentation strategies
and quality assessment practices essential for successful ML outcomes while maintaining data
integrity throughout the preparation process.

Chapter 5: Feature Engineering- This chapter explores the art and science of extracting
meaningful features from diverse data sources including text, speech, and images. The chapter
covers feature identification techniques, dimensionality reduction methods, and feature
transformation approaches, with practical examples demonstrating how to enhance your
datasets for optimal ML model performance using AWS tools like SageMaker Feature Store
and processing capabilities.

Chapter 6: Data Analysis and Visualization- This chapter teaches you to create insightful
visualizations and interpret key statistics that inform ML decision-making. You will learn to
generate various graph types, understand descriptive statistics, implement cluster analysis
for data segmentation, and utilize AWS visualization tools including QuickSight to effectively
communicate data insights to stakeholders and validate your analytical assumptions.

Chapter 7: Framing Business Problems as ML Problems- This chapter bridges the gap
between business challenges and technical ML solutions. The chapter helps you assess when
ML is appropriate, differentiate between supervised and unsupervised learning approaches,
and select suitable models for various business scenarios through real-world case studies and
best practices for problem definition, ensuring alignment between business objectives and
technical implementation.
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Chapter 8: Selecting Appropriate ML Models- This chapter provides comprehensive coverage
of the ML model landscape, including XGBoost, logistic regression, decision trees, and neural
networks such as RNNs and CNNs. You will develop intuition about model selection criteria
based on data characteristics and problem types, while learning to leverage AWS tools and
SageMaker's built-in algorithms for effective model implementation and comparison.

Chapter 9: Training ML Models- This chapter covers methodologies and best practices for
effective model training, including data splitting strategies, optimization techniques, and
compute resource selection. The chapter addresses GPU vs CPU considerations, Spark and
non-Spark platforms, and provides guidance on updating and retraining strategies to maintain
model relevance using SageMaker training jobs and distributed training capabilities.

Chapter 10: Hyperparameter Optimization- This chapter focuses on refining ML models
for peak performance through systematic tuning approaches. You will learn regularization
techniques including dropout and L1/L2 regularization, cross-validation methods, neural
network architecture optimization, and tree-based model tuning. The chapter demonstrates
how to leverage AWS solutions like SageMaker Automatic Model Tuning for efficient
hyperparameter optimization at scale.

Chapter 11: Evaluating ML Models- This chapter centers on comprehensive model evaluation
techniques to ensure optimal performance and avoid common pitfalls. The chapter covers
detecting and handling bias and variance, understanding evaluation metrics such as AUC-
ROC, precision, recall, and F1 score, and implementing both offline and online evaluation
strategies using AWS tools for continuous model assessment and validation.

Chapter 12: Building ML Solutions for Performance and Scalability- This chapterdiscusses
the creation of machine learning solutions that are high-performing, scalable, resilient, and
fault-tolerant. You will explore monitoring with AWS CloudTrail and Amazon CloudWatch,
deploying solutions across multiple regions and availability zones, creating and managing
AMIs and Docker containers, implementing auto-scaling, and following AWS best practices
for enterprise-grade ML deployments.

Chapter 13: Recommending and Implementing Appropriate ML Services- This chapter
teaches you to choose and implement the most suitable AWS machine learning services for
specific scenarios. The chapter covers AWS ML application services including Amazon Polly,
Lex, and Transcribe, understanding service quotas, making build-versus-buy decisions with
SageMaker built-in algorithms, and optimizing costs through strategic use of spot instances
and AWS Batch for deep learning workloads.
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Chapter 14: Applying AWS Security Practices to ML Solutions- This chapter focuses on
implementing fundamental AWS security practices essential for production ML systems. You
will learn about IAM roles and policies for ML workflows, S3 bucket security configurations,
VPC networking for secure deployments, and encryption and anonymization techniques
to protect sensitive data throughout the ML pipeline while maintaining compliance with
organizational security requirements.

Chapter 15: Deploying and Operationalizing ML Solutions- This chapter covers the
complete lifecycle of ML model deployment and operational management. The chapter
addresses exposing and interacting with ML endpoints, implementing A /B testing strategies,
establishing retraining pipelines, and debugging and troubleshooting techniques to ensure
models continue performing optimally in production environments using SageMaker
endpoints and monitoring capabilities.

Appendix- This chapter provides a comprehensive practice test that simulates the actual
AWS Certified Machine Learning - Specialty exam experience. This chapter includes sample
questions across all four domains, detailed explanations for correct and incorrect answers, and
strategic guidance for exam preparation, helping you assess your readiness and identify areas
requiring additional study before taking the certification exam.
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CHAPTER 1

Creating Data
Repositories for
Machine Learning

Introduction

Machine learning (ML) is transforming the way we interact with technology, enabling systems
to learn from data and make intelligent decisions without being explicitly programmed.
From personalized recommendations and fraud detection to natural language processing
and predictive analytics. At the core of every successful ML project lies one indispensable
element: data. This chapter zeroes in on two foundational pillars essential for creating robust
data repositories: identifying the myriad sources of data and selecting the optimal storage
mediums to house this data. From understanding the content and location of primary data
sources, such as user-generated data, to evaluating the strengths and use cases of various AWS
storage solutions like Amazon S3, Amazon Elastic File System (EFS), and Amazon Elastic
Block Store (EBS), this chapter equips you with the knowledge to architect data repositories
that are not only scalable and secure but also precisely tailored to the needs of your ML
applications.

Structure

The chapter covers the following topics:
e Introduction to data in ML

e Identifying data sources
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e Analyzing data characteristics

e Determining storage mediums

Objectives

By the end of this chapter, readers will be able to identify and evaluate potential data sources for
ML, understanding their content, location, and relevance. We will analyze data characteristics
to inform the selection of appropriate storage solutions and choose the most suitable AWS
storage mediums based on the specific needs of ML projects, considering factors like data
type, access patterns, and scalability requirements. We will understand how to implement
best practices for secure, cost-efficient, and compliant data storage on AWS and apply this
knowledge to build real-world ML projects, ensuring a solid foundation for building scalable
and robust data repositories.

Introduction to data in ML

In the enthralling world of ML, data is not just king; it is the very lifeblood that powers the
algorithms, breathing intelligence into models that can predict, classify, and make decisions
with astonishing accuracy. Data acts as the critical ingredient in concocting models that can
foresee stock market trends, personalize your streaming service recommendations, or even
diagnose diseases from medical images. You are now able to use your smartphone camera and
identify plants or translate text in real-time, all of which is made possible through ML models
trained on vast datasets of images and languages. Such practical applications underscore
the quintessence of data: without diverse, high-quality datasets, ML models would be like
ships without compasses adrift in a sea of potential, but lacking the direction needed to reach
ground-breaking innovations.

As we explore the digital age, the exponential growth of data in all its forms has become a
defining characteristic of our time. The latest statistics paint a staggering picture. According
to the International Data Corporation (IDC), the global datasphere is expected to grow to 175
zettabytes by 2025, a testament to the sheer volume of information generated, captured, and
stored across the globe. This monumental growth is fueled by advancements in Internet
of Things (IoT) devices, social media, high-resolution video content, and the increasing
digitization of industries and personal lives. Each byte of this vast ocean of data holds potential
insights for ML models, making the identification and strategic storage of data more crucial
than ever.

The volume of data generated by various industry verticals has seen immense growth due
to advancements in digital technology, the IoT, and increased internet usage worldwide, as
illustrated in the following figure:
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Figure 1.1: Top industry verticals generating huge amounts of data

Identifying this data, sifting through structured databases, unstructured social media posts, or
semi-structured IoT sensor readings is the first step in harnessing its power. The challenge lies
not only in collecting this data but in effectively storing it in ways that make it accessible and
usable for ML projects. For instance, health care industries are leveraging Electronic Health
Records (EHRs) to train ML models that can predict patient outcomes, improve diagnoses,
and personalize treatment plans. This application requires meticulously organized and
securely stored data to ensure patient privacy and compliance with regulations like the Health
Insurance Portability and Accountability Act (HIPAA).

In e-commerce, companies analyze customer behavior, preferences, and feedback from
various sources to tailor recommendations, optimize supply chains, and enhance customer
service. Here, the diversity of data, from transaction logs to customer service interactions,
demands versatile storage solutions like Amazon S3 for unstructured data or Amazon RDS for
transactional data, ensuring scalability and high availability.

Furthermore, the advent of smart cities and autonomous vehicles underscores the importance
of real-time data processing and storage. Traffic patterns, sensor data from vehicles, and
environmental information must be stored in a manner that supports rapid access and analysis,
often employing edge computing solutions alongside cloud storage to minimize latency.

The importance of identifying and categorically storing this data cannot be overstated. It
enables organizations to not only make informed decisions and innovate but also to ensure
ethical considerations are met in handling personal and sensitive information. As we continue
to generate data at an unprecedented rate, the strategies we adopt for its identification, storage,
and usage will dictate the trajectory of advancements in machine learning (ML) and artificial
intelligence (AI), shaping the future of technology and its impact on society.
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Identifying data sources

The objective of identifying the location of data and understanding how it can be collected
is crucial for building effective ML models. This process involves a nuanced understanding
of various data types, such as user data, transactional data, and sensor data, and the
methodologies employed to collect these data efficiently and ethically. Let us explore these
components in detail.

Identifying location of data

The location of data will depend on the category of data, and the following are the important
categories to be aware of:

User data: Typically found in web applications, social media platforms, customer
feedback forms, and online purchase histories.

Transactional data: Located in e-commerce platforms, banking systems, and any
digital platform where transactions occur. This data is usually stored in transactional
databases or ledgers and can be accessed through database queries or transaction logs.

Sensor data: Generated by IoT devices, smartphones, industrial equipment, and
environmental sensors. A practical example includes smart home devices that
continuously send data about temperature, humidity, or energy usage to a centralized
server for analysis and optimization.

Collecting data

The following are the most common ways of collecting data:

Web scraping: Employing bots or crawlers to collect data from websites. This is
particularly useful for gathering user opinions, reviews, and product information
from various online sources. Amazon Kendra Web Crawler is a very good example.

Application programming interfaces (APIs): Leveraging APIs provided by platforms
(like Twitter, Facebook, or Google Maps) to systematically collect data that includes the
extraction of user posts, comments, and likes to analyze trends and sentiments. This
method ensures structured data collection and is governed by the platform's data
usage policies, ensuring ethical data usage.

Database queries: Running Structured Query Language (SQL) queries on databases
to extract transactional or operational data, which can then be used for trend analysis,
financial forecasting, or customer behavior modeling. For example, an e-commerce
platform might store transactional data in a relational database management system
(RDBMS), where each transaction record details purchases, returns, and payment
methods.
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Direct collection from IoT devices: This data is often streamed in real-time and
requires technologies capable of handling big data streams, such as Apache Kafka or
Amazon Kinesis. Utilizing Message Queuing Telemetry Transport (MQTT) or similar
protocols to collect data directly from sensors or IoT devices in real-time, providing a
continuous stream of data for analysis.

File formats for ML

Selecting the appropriate file format for storing and processing data is a critical step in
preparing for ML workflows. The choice of format affects everything from data ingestion
speed and storage efficiency to compatibility with ML tools and libraries. AWS services offer
flexibility in handling a wide range of data formats, each suited for different types of tasks and
stages in the ML lifecycle.

The following is an overview of commonly used file formats and their relevance in ML
workflows:

Comma-separated values (CSV) is a popular choice for structured, tabular data such
as training datasets and feature sets. It is human-readable, easy to generate and parse,
and widely supported by ML libraries like pandas and scikit-learn. However, it lacks
support for hierarchical data and becomes inefficient when handling large or complex
datasets due to its lack of compression and indexing capabilities.

JavaScript Object Notation (JSON) is commonly used for semi-structured data
from APIs or logs, especially when dealing with nested elements like metadata or
sensor readings. It supports hierarchical structures and is widely compatible across
programming languages, making it a flexible choice for many ML workflows. However,
JSON can be verbose, and parsing large files may be slow without optimized tools or
libraries.

Parquet is a columnar storage format ideal for big data applications and large-scale
model training, especially when using services like Amazon Athena or AWS Glue. It
offers efficient compression and fast query performance, making it well-suited for
analytics workloads. However, Parquet is less human-readable and usually requires a
processing engine like Apache Spark for effective use.

Optimized row columnar (ORC) is designed for high-performance data processing,
particularly in Amazon EMR or Hive-based workflows. It provides high compression and
faster read performance for large-scale datasets.

Avro is well-suited for data serialization and streaming pipelines, particularly with
tools like Kafka or AWS Kinesis. It uses a compact binary format and supports
schema-based, row-oriented storage, making it efficient for message passing and
data exchange. However, Avro is not human-readable and requires careful schema
management to ensure compatibility across systems.
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Image, audio, and video formats like [PEG, PNG, WAV, and MP4 are commonly
used in deep learning models such as CNNs and RNNs. These formats are natively
supported by frameworks like TensorFlow and PyTorch, enabling direct integration
into ML pipelines. However, they typically require extensive pre-processing and
transformation before being used for training or inference.

TFRecord is a binary file format developed for TensorFlow, optimized for training
large-scale deep learning models. It offers efficient storage and performance within
TensorFlow pipelines, especially when working with large datasets. However, its use
is limited outside the TensorFlow ecosystem due to a lack of broader compatibility.

Understanding when and how to use each of these file formats is essential for building
efficient and scalable ML solutions on AWS. Whether you are streaming real-time data from
IoT devices, querying historical data in S3, or feeding labeled images into a training pipeline,
choosing the right format will help ensure performance, compatibility, and cost-efficiency
throughout the ML workflow.

Types of data involved

The following are the types of data involved:

Structured data: Highly organized and easily searchable, often stored in relational
databases. Examples include customer information in a customer relationship
management (CRM) system or transaction details in an e-commerce database.

Unstructured data: Not organized in a pre-defined manner, making it harder to collect
and interpret. Examples include text data from social media posts, images, and videos
from user uploads.

Semi-structured data: A mix between structured and unstructured data, such as JSON
or Extensible Markup Language (XML) files from web APIs. For instance, sensor
data might be transmitted in JSON format, containing both structured elements (like
timestamps and device IDs) and unstructured elements (like complex sensor readings).

Analyzing data characteristics

In the dynamic and ever-evolving domain of big data, the comprehension and management
of vast datasets necessitate a strategic framework, encapsulated by the seminal 7 Vs of data.
These critical dimensions are as follows:

Volume
Velocity
Variety

Veracity
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e Value
e Variability

e Visualization and accessibility

The above core principles are used by data professionals to decipher the complexity of data. As
navigators in the intricate world of information, data scientists and technology experts leverage
these pillars to convert the extensive arrays of raw data into meaningful, actionable insights.
Addressing the challenges presented by the immense volume of data generated continuously,
the swift pace at which it flows, the diverse forms it assumes, and the imperative for accuracy
and utility, the 7 Vs provide a structured approach to data analysis. This framework not only
facilitates the efficient extraction of pertinent information but also ensures that data-driven
decisions are both insightful and impactful. By adhering to these principles, organizations
can adeptly maneuver through the intricacies of big data, unlocking its vast potential to drive
innovation and inform strategic decisions. As we engage with the multifaceted aspects of big
data, the 7 Vs serve as a guiding framework, steering efforts towards the realization of data’s
full potential in shaping future advancements.

Refer to the following table:

Type of V Definition and impact Handling strategies Use cases

Volume The sheer size of data Use data compression, Analyzing social
collected can be massive distributed storage media posts for
and impact storage, systems, and scalable trends requires
processing, and analysis cloud solutions. managing and
capabilities. processing large

datasets.

Velocity The speed at which datais | Implement real-time Real-time monitoring
generated and processed processing frameworks of stock transactions
is crucial for real-time data | (Apache Kafka, Spark for algorithmic
applications. Streaming); ensure rapid | trading.

data storage performance.

Variety The range of data types and | Utilize a mix of databases | Integrating

sources includes structured, | (NoSQL, RDBMS) and customer data from
unstructured, and semi- data integration tools for | different sources
structured data. various data formats. for comprehensive
analytics.

Veracity The quality and accuracy Data validation, Ensuring accurate
of data affect the reliability | cleansing, and patient data
of analyses and ML model | enrichment processes to | in healthcare
predictions. improve data quality. applications for

reliable diagnoses.
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Value The usefulness of data Use analytics and Using customer
in deriving insights and business intelligence purchase history
making informed decisions | tools to extract actionable | and preferences
highlights the need to focus | insights; discard for personalized
on relevant data. irrelevant data. marketing
campaigns.

Variability | Inconsistencies in data Develop adaptive models | Seasonal analysis of
over time can complicate and data pipelines to sales data to predict
processing and analysis. accommodate data inventory needs.

pattern changes.

Visualization | How easily data can be Leverage visualization Creating dashboards
and accessed and visualized for | tools (e.g., Amazon for business KPIs
accessibility | analysis is crucial for data | QuickSight, Tableau, that pull data from
exploration and decision- Power BI) and ensure multiple sources for
making. data is stored in real-time monitoring.

accessible, secure formats.

Table 1.1: The 7 Vs of data

Table 1.1 encapsulates the essence of understanding and managing data characteristics
effectively for ML and data analytics projects. Each V represents a critical dimension of data
that professionals must navigate to unlock the full potential of their data-driven initiatives.

Determining storage mediums

In the realm of ML and Al, the selection of appropriate storage mediums is a critical decision
that profoundly influences the efficiency, scalability, and overall success of ML projects. As
we embark on the journey of determining storage mediums for ML applications, particularly
within the ecosystem of Amazon Web Services (AWS), it is essential to approach this task
with a blend of technical acumen and strategic foresight. This topic delves into the intricate
process of selecting and optimizing storage solutions that not only accommodate the vast and
varied nature of ML datasets but also align with the computational demands and data access
patterns inherent to ML workflows.

The evolution of cloud computing and storage technologies has presented ML practitioners
with a plethora of storage options, each with its unique characteristics, cost profiles, and
performance metrics. From the highly scalable and durable Amazon Simple Storage Service
(Amazon S3), designed for data lake architectures, to the high-performance file systems
offered by Amazon FSx for Lustre, and Amazon EFS for smaller datasets. Additionally, the advent
of AWS Lake Formation further simplifies the setup and management of secure data lakes,
enabling seamless access to clean and cataloged data for ML model training and inference.
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As we navigate the complexities of determining storage mediums, it is imperative to consider
factors such as data volume, velocity, and variety, alongside the requirements for data security,
compliance, and cost-efficiency. Moreover, the integration of these storage solutions with
Amazon SageMaker, AWS's fully managed service for building, training, and deploying ML
models, highlights the importance of seamless data flow and accessibility in accelerating the
ML model development lifecycle.

This exploration will not only highlight the technical specifications and ideal use cases for each
AWS storage option but will also offer insights into best practices for lifecycle management,
data storage optimization, and the strategic deployment of storage resources in support of ML
objectives. Whether dealing with the ingestion and storage of real-time sensor data, managing
large-scale datasets in a data lake, or ensuring low-latency access to training data, the careful
determination of storage mediums stands as a cornerstone of effective ML architecture on
AWS.

Determining storage mediums is a topic that demands a thoughtful and informed approach,
marrying the technical capabilities of AWS storage services with the nuanced requirements
of ML applications. Through this lens, we endeavour to equip ML practitioners with the
knowledge and tools necessary to make informed storage decisions, paving the way for
innovative, scalable, and cost-effective ML solutions.

Here is an in-depth look at the specified areas:
e Amazon S3 as storage for a data lake:

o Options and lifecycle configuration: Amazon S3, serving as a centralized
storage repository for data lakes, is critical for ML workflows in SageMaker. It
provides a durable, scalable platform for storing training data, model artifacts,
and output results.

o SageMaker integration benefits: The direct integration between S3 and
SageMaker facilitates easy access to datasets for training and inference,
supporting various data formats essential for ML models. Amazon S3 data storage
options offer a tailored, flexible solution for managing datasets within Amazon
SageMaker workflows, catering to a wide range of ML project requirements
from active model training to long-term dataset archiving. With services like
S3 Standard for readily accessible data, essential for iterative model training
and real-time analytics, to S3 Intelligent-Tiering, which automatically optimizes
costs for datasets with unpredictable access patterns, SageMaker users can
efficiently manage their ML data lifecycle. For datasets accessed less frequently
but requiring quick retrieval when needed, S3 Standard-IA and S3 One Zone-
IA provide cost-effective alternatives. Moreover, for the long-term storage of
historical data, which might be used for trend analysis or compliance purposes
within SageMaker projects, S3 Glacier and S3 Glacier Deep Archive offer secure,
extremely low-cost storage solutions with flexible retrieval times. These diverse



10 AWS Certified ML Specialty Guide

S3 storage classes enable SageMaker users to streamline their ML workflows,
ensuring data is stored in the most appropriate, cost-effective manner without
compromising the performance and scalability of their ML models.

Table 1.2 is a summary of Amazon S3 data storage options, detailing their
description, cost implications, latency characteristics, and practical use cases to
provide a comprehensive overview tailored for quick reference:

S3 storage

. Description Cost Latency | Practical use case
option
S3 Standard | General-purpose Moderate, with Low Ideal for
storage for frequently | higher costs for active content
accessed data. frequent access. distribution and
big data analytics.
S3Intelligent- | Automatically moves | Lower than Low to Suitable for data
Tiering data between two Standard for moderate | with unknown or
access tiers based infrequently changing access
on changing access accessed data, with patterns.
patterns without a monitoring and
performance impact. | automation fee.
S3 Standard- | Infrequently accessed | Lower storage cost | Low Perfect for long-
IA data requires rapid than Standard, but term storage
access when needed. | with retrieval fees. of data that is
accessed less
frequently.
S3 One Zone- | Similar to Standard-IA | Lower than Low Ideal for secondary
IA but stored in a single | Standard-IA, with backup copies or
availability zone for a risk of data storing data that
cost savings. loss if the AZ is can be recreated.
compromised.
S3 Glacier Low-cost storage Very low storage High Suitable for
option for archiving cost, with (minutes | archiving
data that is rarely additional retrieval | to hours) | compliance

accessed and can
tolerate retrieval times
of several hours.

fees based on
speed.

records and digital
media archives.
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S3  Glacier | The lowest-cost Lowest storage Very high | Ideal for archiving

Deep Archive | storage option for cost, with retrieval | (12 hours) | data that may
long-term archiving, fees. only need to be
where data retrieval accessed once or
times of 12 hours are twice a year
acceptable.

Table 1.2: AWS storage options

Table 1.2 offers a snapshot of the diverse range of Amazon S3 data storage options,
helping users navigate the trade-offs between cost, latency, and access needs to select
the most appropriate solution for their specific use cases, from active data analytics
and content distribution to long-term data archiving.

e Amazon FSx for Lustre:

(e]

High-performance file system for ML: Amazon FSx for Lustre provides a high-
performance file system optimized for workloads requiring fast processing of
large datasets, such as complex simulations, genome sequencing, and ML /DL
tasks.

SageMaker integration benefits: Amazon FSx for Lustre improves data transfer
speed for Amazon SageMaker ML by eliminating the initial Amazon S3 download
step. When FSx for Lustre is used as an input data source for SageMaker, ML
training jobs are accelerated, leading to faster startup and training times. This
integration also reduces the total cost of ownership by avoiding repetitive
downloads of common objects for iterative jobs on the same dataset, thus saving
on S3 request costs123.

The high-performance file system provided by FSx for Lustre offers shared
storage with sub-millisecond latencies, up to hundreds of GBs/s of throughput,
and millions of IOPS, which significantly enhances the speed of data transfer
and processing for SageMaker ML workloads.

e Amazon EFS:

(o]

EFS for ML model training: Amazon EFS offers a simple, scalable, elastic file
system for Linux-based workloads. For ML tasks in SageMaker that require a
shared file system, EFS is ideal for smaller datasets and scenarios where low
latency is crucial.

SageMaker integration benefits: The integration of Amazon EFS with SageMaker
allows for the direct interaction between SageMaker and Amazon EFS, reducing
the start-up time by eliminating the data download step when using the file
input mode.



