Al-assisted
Programming for Web
and
Machine Learning

Leveraging Al for smarter coding
practices and development environments

Dr. Muralidhar Kurni
Ramesh Krishnamaneni
Dr. Srinivasa K. G.

www.bpbonline.com

ii

First Edition 2026
Copyright © BPB Publications, India
ISBN: 978-93-65896-596

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any form or by any
means or stored in a database or retrieval system, without the prior written permission of the publisher with the
exception to the program listings which may be entered, stored and executed in a computer system, but they cannot
be reproduced by the means of publication, photocopy, recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The information contained in this book is true and correct to the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but the publisher cannot
be held responsible for any loss or damage arising from any information in this book.

All trademarks referred to in the book are acknowledged as properties of their respective owners but BPB Publications
cannot guarantee the accuracy of this information.

To View Complete E E

BPB Publications Catalogue
Scan the QR Code: E

www.bpbonline.com

iii

About the Authors

Dr. Muralidhar Kurni is an accomplished educator, author, researcher, and entrepreneurship
trainer with more than 25 years of experience in teaching and academic leadership. He is currently
an associate professor in the department of computer science and engineering at Anantha Lakshmi
Institute of Technology and Sciences (Autonomous), Ananthapuramu, India. He holds a Ph.D. in
computer science and engineering from JNTUA, India, and has completed postdoctoral research at
the University of South Florida, USA. An IEEE senior member, Dr. Kurni has authored and edited
several books with leading international publishers and published extensively in reputed journals and
conferences in areas including Al, IoT, cloud computing, and blockchain. Recognized with multiple
national and international awards for excellence in teaching, research, and innovation, he also serves
on editorial boards and reviews for prestigious scientific publications.

Ramesh Krishnamaneni is a seasoned technology professional with over 17 years of expertise in
hybrid and multi-cloud architectures (IBM, AWS, Azure), high performance computing (HPC),
artificial intelligence (AI), and quantum computing. He is currently a solutions architect — cloud
center of excellence at IBM, leading enterprise-level cloud transformation projects, designing hybrid
cloud strategies, and mentoring global teams. Ramesh holds an M.S. in software systems from BITS
Pilani, a B.E. in electrical and electronics engineering from JNTU Anantapur, and has completed a
postgraduate specialization in artificial intelligence and machine learning from the University of Texas
at Austin. He has co-authored several international journal and conference publications in Al, machine
learning, IoT, and big data analytics. A holder of multiple IBM certifications, as well as patents, he has
been recognized with numerous innovation and excellence awards for his contributions to technology,
research, and professional leadership.

Dr. Srinivasa K.G. is a distinguished academician with over two decades of experience in teaching,
research, and academic leadership. He currently serves as professor of data science and artificial
intelligence and dean (academics) at DSPM IIIT-Naya Raipur, India. He holds a Ph.D. in computer
science and engineering from Bangalore University, is a CMI Level 5 awardee in management and
leadership, and a BOYSCAST Fellow of the department of science and technology, Government of
India. Dr. Srinivasa has authored numerous books and over 150 research papers in reputed international
journals and conferences, with expertise spanning data mining, cloud computing, IoT, learning
analytics, and cyber-physical systems. He has held prestigious academic and research positions in
India and abroad, including post-doctoral research at the University of Melbourne, Australia. A senior
member of IEEE and ACM, he has received multiple national and international awards recognizing
his outstanding contributions to engineering education and research.

iv

3
o

About the Reviewers

Manoj is a data and Al specialist with extensive experience in designing and implementing scalable
data and machine learning solutions. With a solid foundation in data engineering, advanced analytics,
and cloud platforms, he builds end-to-end systems that transform complex data into meaningful,
actionable insights.

He brings a strong blend of technical expertise and business acumen, enabling organizations to
maximize the value of their data ecosystems while adopting modern Al capabilities. His current focus
is on integrating Al into enterprise workflows - leveraging generative Al and responsible Al practices
to create intelligent, reliable, and ethical solutions.

Manoj is also an active mentor and continuous learner, staying engaged with the evolving Al landscape.

Meghal Gandhi is a software engineer and machine learning researcher at Charles R. Drew
University of Medicine and Science in Los Angeles. He holds a master’s degree in computer science
from California State University, Fullerton. His current work focuses on Al applications in healthcare,
where he develops machine learning and deep learning models for NIH-funded projects aimed at
predicting disease risk using electronic medical records. His research has been published in leading
medical journals and conferences, contributing to the growing intersection of data science and public
health. Prior to his research career, Meghal worked at AT&T as a software engineer, specializing in big
data and performance engineering.

He brings hands-on experience across the data pipeline—from building scalable systems to developing
predictive models in healthcare—and is passionate about solving real-world problems through data
to improve lives through Al-powered healthcare solutions. Meghal also serves as a technical reviewer
for various publications, contributing his expertise to books on Al, machine learning, and healthcare-
focused Al technologies.

Acknowledgements

O Dr. Muralidhar Kurni would like to thank his mother, Smt. P. Sanjeevamma, Shri M. Ramesh Naidu,
Vice Chairman of Anantha Lakshmi Institute of Technology and Sciences (Autonomous), and his
friends, Dr. Mujeeb Shaik Mohammed, Mr. K. Somasena Reddy, and his students K. Shahir Basha and
K. Anusha, for their wholehearted support in completing this book.

O Ramesh Krishnamaneni would like to express heartfelt gratitude to his parents Jyothi and Yuvarajulu
Naidu, for their constant encouragement and support throughout this journey. He also would like to
thank his mentors, Gajendra Sanil, Pradeep Mansey, Neil De Lima, Dhruv Rajput, and Neeraj Kaushik,
for their invaluable help, feedback, and motivation during the development of this book.

O Dr. Srinivasa K. G. would like to thank Prof. Om Prakash Vyas, Vice Chancellor and Director, IIIT
Naya Raipur, for his kind encouragement to publish this book. He would also like to thank all IIIT
Naya Raipur faculty members for their wholehearted support in publishing this book.

vi

Preface

Software development is entering a new era. What was once the sole domain of human coders is now a
collaborative space where artificial intelligence (AI) works alongside us, suggesting improvements,
generating code, catching errors, and even optimizing solutions before we run them.

When we first explored Al-assisted coding, each of us approached it with a healthy mix of curiosity and
skepticism. Could an AI truly understand the complexities and nuances of modern development workflows?
We put it to the test, and within days, our initial doubts gave way to excitement. Tools like GitHub Copilot
and ChatGPT were not only automating repetitive coding tasks but also suggesting elegant solutions and
introducing innovative approaches none of us had anticipated. Experiencing this collectively changed the
way we thought about programming. We realized that Al is not here to replace a developer’s creativity or
expertise — it is here to amplify them. This book was born from that shared discovery, and we aim to help you
experience Al as a trusted partner in your development journey.

Al-assisted Programming for Web and Machine Learning is your complete, hands-on guide to integrating Al into
your daily coding practice. We will start with the foundations — understanding AlI’s role in programming,
setting up an Al-ready environment, and mastering the art of prompt engineering. Then we will move into
practical applications: using Al to accelerate front end and back end development, enhance debugging and
optimization, and streamline machine learning pipelines from preprocessing to deployment. You will also
find real-world case studies, best practices, and ethical considerations to keep your work responsible and
future-ready.

Whether you are a student exploring Al-assisted coding for the first time, a developer looking to shorten
delivery timelines, or a machine learning practitioner aiming to automate complex workflows, this book will
give you both the skills and the confidence to work with Al not as a gimmick, but as an essential part of your
toolkit.

By the final chapter, ATl will not feel like an extra you occasionally try — it will feel like a trusted teammate you
cannot imagine working without.

Chapter 1: Al in Programming — Trace Al's journey from research labs to everyday coding desks. Explore
transformative milestones, from the first code-assist experiments to today’s advanced tools, and see how
GitHub Copilot and ChatGPT are reshaping developer workflows. Learn why adoption is growing, what
benefits early adopters report, and where the limitations still lie so you can set realistic expectations for Al in
your work.

Chapter 2: Setting up Your AI Environment — Great results start with the right environment. Learn how to
configure Visual Studio Code for Al integration, use Jupyter Notebook for data-driven projects, and manage
collaborative coding with GitHub. Discover how Docker supports containerized workflows and how Al
agents can automate routine tasks like testing, deployment, and code refactoring, leaving you free to focus on
problem-solving.

Chapter 3: Prompt Engineering — The difference between mediocre and outstanding Al results often comes
down to the prompt. This chapter shows you how to craft clear, context-rich prompts for specific outcomes—
whether generating full features, diagnosing errors, or building complex ML workflows. Real-world examples
demonstrate how subtle changes in phrasing can produce dramatically different results, and case studies
reveal prompt strategies used in successful projects.

vii

Chapter 4: Alin Front end Development — Experience the speed boost of letting Al generate clean, responsive
HTML/CSS layouts, streamline JavaScript functions, and prototype UI/UX concepts in minutes. See how to
combine Al’s rapid prototyping with your design expertise to fine-tune results and integrate these capabilities
with React to deliver dynamic, data-driven, and accessible front end applications.

Chapter 5: Al for Back end Development — Learn how Al can accelerate server-side coding by generating API
endpoints, suggesting optimized database queries, and even writing authentication logic. Explore examples
using Node.js and Django, with guidance on ensuring security, scalability, and maintainability. You will also
see how Al can help with documentation and automated testing to support long-term back end health.

Chapter 6: Debugging and Optimization with AI — Transform debugging from a time-consuming chore into
an efficient, collaborative process. Learn how to feed Al error messages and receive actionable suggestions,
detect hidden performance bottlenecks, and optimize code for speed and scalability. This chapter also covers
integrating Al with profiling tools to monitor performance in real time.

Chapter 7: Data Preprocessing with AI—Machine learning depends on high-quality data. Here, you will learn
how AI can clean datasets, handle missing values, normalize formats, and extract key features automatically.
Explore techniques for visualizing complex data relationships and preparing both structured and unstructured
data for analysis, saving hours of manual preprocessing.

Chapter 8: Building and Training Machine Learning Models - Use Al to assist in selecting the right algorithms,
setting up your ML pipeline, and training models efficiently. Build classification, regression, CNN, and MLP
models while learning how to fine-tune hyperparameters for maximum performance. Understand evaluation
metrics in depth so you can measure success beyond just accuracy.

Chapter 9: Deploying Optimized ML Models — A trained model is only valuable when it is in use. This
chapter shows you Al-assisted approaches for fine-tuning, versioning, and deploying models to production.
Learn scalable deployment strategies, from containerized services to cloud-based hosting, and see how to
automate updates and monitor model performance post-deployment.

Chapter 10: Real-world Applications — Go behind the scenes of Al-assisted projects in full-stack web
development and machine learning. Learn how teams cut development time, improve code quality, and
deliver innovative solutions using Al tools. Each case study includes takeaways you can apply to your work,
plus cautions to help you avoid common pitfalls.

Chapter 11: Future Innovations and Ethics in AI — Look beyond current capabilities to emerging trends like
autonomous coding agents, multimodal Al assistants, and integrated Al project management. At the same
time, address ethical challenges: mitigating bias, safeguarding user privacy, and ensuring that automation
supports — rather than replaces — human creativity.

viii

Code Bundle and Coloured Images

Please follow the link to download the
Code Bundle and the Coloured Images of the book:

https://rebrand.ly/6fa538

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/AlI-assisted-Programming-for-Web-and-Machine-Learning.
In case there's an update to the code, it will be updated on the existing GitHub repository.

We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata

We take immense pride in our work at BPB Publications and follow best practices to ensure the accuracy
of our content to provide with an indulging reading experience to our subscribers. Our readers are our
mirrors, and we use their inputs to reflect and improve upon human errors, if any, that may have occurred
during the publishing processes involved. To let us maintain the quality and help us reach out to any

readers who might be having difficulties due to any unforeseen errors, please write to us at :

errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB Publications” Family.

At www.bpbonline.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters, and receive exclusive discounts and offers on BPB books and eBooks. You can check
our social media handles below:

Instagram Facebook Linkedin YouTube

Get in touch with us at: business@bpbonline.com for more details.

ix

Piracy

If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please
contact us at business@bpbonline.com with a link to the material.

If you are interested in becoming an author

If there is a topic that you have expertise in, and you are interested in either writing or
contributing to a book, please visit www.bpbonline.com. We have worked with thousands
of developers and tech professionals, just like you, to help them share their insights with
the global tech community. You can make a general application, apply for a specific hot
topic that we are recruiting an author for, or submit your own idea.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our Discord space

Join our Discord workspace for latest updates, offers, tech happenings around the world, new releases, and sessions
with the authors:

https://discord.bpbonline.com

Table of Contents

1. ALIN PrOGIamImMingcccveeievisinerinniiissiisinsisisissiesissesismssessesssssssssssssssssssssssssses 1
INEFOAUCHON. ..o 1
SEIUCHUTE. ...t bbb 1
ODJECHIVS ...t 2
History of Al'in programmiingcccviiiiimieiiincesess s eaes 2

Er1Y DEQIMIINGS ...ttt 2
Rise of MACKINEG [EATTIINGcvvevviiiiiiiieieieieicct e 3
Neural networks take Center SEAZE ...t 3
CUTTONME CT@ ittt s 4
Benefits and use cases of ALIN COAINGcceiiiiiiiiiiiiiiiiiii e 5
Enhanced productivityccuoveiiiiiiiiiiiicisiiicccccte e 5
Improved code GUALILYccviiiiiiiiiiiiic s 7
Important caveat when reviewing Al-generated code carefillly............coovvvvvvvvvveeeieeeeeeeeeees 9
AccesSIDIlitY fOr DEGINMEOTScvviviieieieiiiiiiiiiitctceeec s 10
Facilitation Of iNNOUVAHIONccovviiiiiiiiiiiiiiiiiit i s 11

AT eNNATICES COAING .ot 12
Overview of GitHub Copilot and ChatGPT capabilities...........ccccocviciuriciniiiiciniciieiceicccceieeeenen. 12
GIEHUD COPIIOL ...ttt ettt 12
How GitHub Copilot makes advanced tASKS ASIETccceueueueueueueueieieieeieeieee e 14
CHALGPT ..o 15
Synergy between GitHub Copilot and CHALGPTccccoveiiiiiiiiiiiiiicicccciccice e 18
Key milestones in Al-assisted developmentccooouiiiiiiiiiiniiii 18
Current challenges in adOpting AL TOOLSc.cuvcueuieieiriieiiceiriceecere e eaes 23
CONCIUSION. ...ttt 28
QQUESTIONS ..ttt eeteee ettt ettt ettt e et e e ee bt e e eebeeeeebaeeeessseeeessaeeesseeeessaeeasssseeasbeseeassaeesasseeeesseeeensseeeanseeesanseeesasreeenn 28
EXOICISES .. .cviiiiiiiiiiit et 29
2. Setting up Your AL ENVIONMENEcuviiiiiiniiiniiiiniiiiiiiiininiisisiississnsssssisssssssssssssssssessssssssssssssssssssass 31
INETOAUCHON. .. 31
SEIUCHUTE. ...ttt 31
ODJECHIVES ... 32
Installing and configuring VS Codecccoiiiiiiiiiiiiiiii s 32
Downloading and installing VS COEcoeueumiiiiiiiiiiiiiiieiciccctctcise e 32
Customizing VS Code for Al developmentcocovvvviiiiiiiiiciiiiiiiiiiiiiiiieieiccccs s 33
Must-have extensions for Al PrOSYAMMIINGccccccviviviiiiiiiiiiiiiiiiic s 33
Boosting productivity with advanced cUSIOMIZALION..............cccucucuiiiiiiiininiciicciit e 34
Case study: How VS Code can revolutionize an Al team’s WOrkflowcooeveveveeieiovcieieriiceicecinen, 35
Emerging Al to0ls for AeVEIOPerscccovvvviiiiiicuiiiiiiiiiiiiicciciccctt 36

Using Jupyter Notebook for data-driven projects...........ccciiiiiiiiiiiicceccceeee e 36

xi

Setting up JUPYLer NOLEDOOKccvueueviiiiiiiiiiiiicicicieie e 36
K@Y POINES....oviiiit s 37
Launching Jupyter NOtEDOOK...............ccovuviiiiiiiiiiiiiciciciicctcc s 37
Common troubleSHOOHING FIPS........c.ccuiuiuiiiiiiiiiiiiiiiicicc e 38
AAUVATICEA SCEUPS ... 38
CUSLOMMIZALION OPHONS ..ot 38
Enhancing data exploration With AL t00ISccoveueieieiiiiiiiiiicicicieiecctccce s 39
Advanced VISUALIZATIONSccuvuiuiiiiiiiiiiiiiicicicecc s 40
Collaborating effectively 011 NOEDOOKSccoeuiuiuiiiiiiiiiiiiiiciiiciciict st 40
ReAI-WOTIA USE CASES.......vovvvvvieiiiiiiciiiie e s 41
Managing version control with Git and GItHUDccccciiiiiiiiiiiiiiiiicccccee, 42
Git fundamentals and COTE COMCOPLScocvvviiiiiiiieiiiiiiiiiiiiicis et 42
SCHENG UP Gl .ottt 42
COre Git COMMUANAS ...ttt 43
Leveraging GitHub for collabOTationcvueveivieiiiiiiiiiiiiicicieieicictcccie e 43
Automating version control with AI-powered t00ISccocovuvciiiiiiiiiiiiiiiiiccc 44
Advanced Git FeCHIIGUES.............cccueueiiieiiiiiiiicciciee e 45
ReAI-O0TIA USE CASES.......ovvviiiiiii s 45
Best practices for Version COMIOL ..ottt 45
Introduction to Docker for containerized WOrkfloWsS...........ccoeviviiiiiiiiiiiice 45
Relevance of containerization for Al AeVeIOPMENtccvueveveiiieiiiiiiiiiiiicieeeieictccee s 46
Key challenges in Al AEVEIOPIENEccvvviiiiiiiiiiiiiiiiiiicicicisisicccs s 46
Overcoming Al development challenges with DOCKETccccevvviiiiiiiiiiiiiiiicccccc 46
Docker versus Dirtual MACHINEScccveveveiiiiiiiiiiieieieie ettt 47
Choosing Docker over VMs for Al developmentcccvivviviiiiiiiiiiiiiiiiiiiciciccicisicicicscssssscscssisaais 47
Understanding key Docker COMPONENLSccviiiiiiiiiiiiiiiiiiiiicicicic e 47
Components working together in Al deVelOPIMEntccccccuivuiuiiiiiiiiiiiiiiicccceecccse e 48
Building a Docker environment for Al AevelOpmEntcccvvucuvieieieieiiiiiiicicicicieeisecccciee s 48
Steps to build and run the CONPATNETcvvuiviiiiiiiiiiiiiiiciciicc s 49
Expanding your Docker Al enVITONIMENEcovviuiiiiiiiiiiiiiiiiiiciciicicci s 49
Role of agents in automating software development taskscccocoeeiiiiiiiiniiie 50
Significance of automation in software AeVEIOPMENTcoovvvvvieieieiiiiiiiicceeee s 50
Al agents s0lving these CHAIIENGEScccvoviviviiiiiiiiiiiiiiiiciccccc s 50
Types of Al agents in software AeVEIOPIMENTcovveuiurueieiiieiiiiiiceieiee e 51
Integrating Al agents into development WOTKflOWS............ccccccovvvvieieiiiiiiiiiiiiiccicccc 52
CASE SHUAY .. 53
Best practices for integrating Al tools into development environments.............cccoovovrinniincccnnnne 54
Selecting the right Al tools for development WOTKAIOWSc.cccoviviiiiiiiiiiiiiciiiiiiiciciccccccc e 54
Al tools for different development FASKS...........cccccueucieueieieiciciiicieceie s 54
Selecting Al tools for MAXTMUNM effiCIEIICYcccvovrivrieieieieieiciiiccice e 55
Optimizing Al-powered development WOTKAIOWS.............cccccvvviiiiiiiiiiiiiiiiiiiciciccccccc 55
Best practices for Al-powered developmentccccvccuciiuiiiiriiiiiiiiiecciiiece e 55

Security considerations for Al-integrated developmentccocvvvivieieiiiiiciicicieieeciccccee e 56

xii

Potential security risks in Al-powered develOPIENtovvvevvcveieieiiiieieiciceee e 56

Best practices for securing Al-enhanced WOTKFIOTWSccccciuiiiiiiiiiiiiiiiiiiiiccccccccecaes 57
Enhancing collaboration with AT t00ISccccveiurmeieieiiiiiiiiiccee e 57
Best practices for Al-enhanced collaborationcvvveviuiviviiriiiiiiiiiiciciccciec s 57
Continuous learning and Al adaptation in developmentccococcvvviviveiciniiiniiiinineissceess 57
Best practices for Al learning and adaptation..............c..cccevevvicreieisisiiiiiiicceee s 58
Future trends in Al-assisted developmentccccovciviviiniiiiiniiiiiiiiisetet s 58
Stay ahead by learning Al-powered DevOps teCHIIGUES.............ccccuiiiriiiiiiiiiiiiiciiicccicccc e 58
CONCIUSION....coiiiiiiii bbb 58
QUESTIONS ..ttt ettt ete ettt ee e et e eeteeeveeetveeetseeetseeseeeseeeaseeesseesseesseensaeensaeeassensseenaseeseeenseeeaseensseensseenses 59
EX@ICISES....civiiiiiiniiii e 60
3. Prompt ENGINEETING....couiiireriruinuinrinriiinintitinininississenisesesseississississtssessessessessssssesssssssstssessessasssssssssssssnsonsssess 63
INEFOAUCHON. ...t 63
SEIUCKUTE. ...t b bbb s a e 63
ODJECHIVES ...ttt bbb 64
Understanding prompt engineering best practices and challenges..........c.cccovceuvnecirnicirnecnnecreneaees 64
Evolution of generative Al and the emergence of Transformerscocoovvveeeeesisviiicicceeeeeesens 65

Al models interpreting and processing prompts effectively.............ccovvvvvvviieieeniiiiciiiiiiiiiiiieeccceses 65
Common prompt engineering MISEAKES..............ccvvvvuereieieieiiiiiiiiicieiee et 67
Advanced prompt engineering teCHNIGUEScvvvvueiririeiiiiiiiniicinieet sttt 67
Choosing the right prompting teCHRIGUEcccuiiiiiiiiiiiiiiiiriiicic e 68
Common challenges in prompt eNgiNeering........cocoveueveieieieiiviieniieieieieissesisisesss s 68
Handling Al RAIUCITIAIIONSc.ccuruiiiiiiiiiiiiiiiciiiic s 68
Avoiding prompt injection AHEACKS ... 69

Ethical considerations it prompt engineeringcouwvervrrerirrrmerisisisisnsisesisisnsnsssesesessssssssssssssssssssssssanies 69
Building a prompt engineering wWorkflowccccciviviiininiiiiniiiiiiiieiiscisse s 69
Step-by-step guide to effective prompt eNgineeringcoovvvvvueueieieieiiiiiiiccsieesseseseee s 70
Designing effective prompts for accurate code generation............c.cccoeuvueueueueiciiiininininiiieeeeeeiseeenes 70
Principles of writing clear and effective Prompts..........cccocvecueeieieiiiiiiiiceeeesc s 70
Key CONSIACTALIONS ..ottt s 71

Pro tips for writing effective ProMpLSccccvvveieiiiiiiiiiiiiiiicc s 71
Structuring prompts for more Precise OULPULceucivivciriiiiiiiiiiiiit e 71
REfiNling @ PrOMIPE ..ot 71

Al debugging with prompt eNgINeEriNG.........ccvuvuiueuiuiiiiiiiiiiieieieccctt s 72
Expanding prompt engineering with advanced teCHNIGUESccccovvviviviivviniiiiniiciniicceees 73
MUlEI-FUTT PYOMIPEING .ottt 73
Chain-of-thought PrOMPEING........cccciiiiiiiiiiiiiiiiiicccc s 73
MEEA-PIOMPEINIG ..ottt 73

Quick reference guide for prompt engineering Strategiesccovvvveereisieieiivicieeeeeeeesee e, 73
Crafting prompts for debugging and error resolution ... 74
Al debugQing CAPADIITHES.............ccucuviiuiiiiiiciiicicieee s 74

Al debugQing WOTKFIOTWc.cvviiiiiiiiiiciiiiici s 75

Writing prompts to identify errors and provide fiXescccocveeeeiniiiiiiiiiicieieisssescee e 76
Customizing prompts for web development and machine learning tasks............ccccccevecurinicriinicrnnnnace. 77
Using Al for front end develOPMEntcccvvviviiuimiieieieieiiiitctcci s 77
Al-powered back end code SUFGESHIONSc.cccveviiiiiieiiiiiiiiiiiiiicieicccct s 80
API authentication WOTKAIOWc.ccueueuiiiiiiiicieieieeee s 81
Practical examples of prompt engineering for task optimization..........cccoeeeiiiiiicnncinicce 83
Automating repetitive coding tasks with Al prompts..........cccccceecciiiiiiiiiiiiiiccicc s 83
Enhancing data processing efficiencyy USTNG Alccueveveioiiiiiiiiieieieieiiiiiiiicciees s 84
Automating API calls and monitoring With Al............ccccoviiiiiiiiiiiiiiiicccc s 85

Al for debugging and code OptiMIZAIONccvueveviieieiiiiiiiicieice et 86
Case studies highlighting real-world applications..............ccccceuriiiiiiiciinieiiecece s 87
Al-assisted development in a SOftWAre SEATEUPocveveveviviiiiiiicicieiciccce s 87
Al-driven rapid prototyping in a RACKATNONc.cccviiiiiiiiiiiiiiiiiccccc s 89
Performance DENCHIMATKcccccviiiiiiiiiccee s 89
Al-generated React and Tailwind UL COAE..........c.ccccucueueieiiiiiiiiieiiicciceeee s 90
Al-powered code optimization in enterprise teCh............coovvviururreieieiiiiiiiiiiiiccee s 91
Al-generated query optimization for large-scale data pipelines..............cccovvvvvivvvicisniiciscees 91
CONCIUSION ...ttt a et 92
QUESTIONS ..ttt ettt ettt et e et e et e eteeebeestbe e bbe e baeeabaesesaesaseaasseaasseanssaassaeassaesssaeasseensseensseensaeassaansseesseanses 92
EX@ICISES ..viiiiiiitttt e 93
4. Alin Front end Development.........eiicininiiiiciininicinciscescnsessssessssssesssssssssssssessssssesees 95
INETOAUCHON. ...t 95
SEIUCKUTE. ..ottt b b a ettt 95
ODJECHIVS ...ttt 96
Automating HTML and CSS generation with Al..........ccccciiiiiiiiiiiiiicccccecceeces 96
Enhancing front end development With Al.............cccovvviiiiiiiiiiiiiiiiiiiiiiiiciccccccis s 96
Al-powered HTML €OAe GENETALION...........cccvoviiiiiirieieieiiiiiicicictetsie ettt 96
Importance of Al-generated HTMLccccccovoviiiiiiiiiiiiiiiiiiiiiiiiciciccicicc s 98
Al-assisted CSS styling and optimizationccceveveveiiuiuiieieisieiiiiiiccce s 98
Benefits of Al-assisted CSS SEYLINGccooviviiiiiiiiiiiiiiiiiiicicis ettt 99
Al-generated [SX for React AppliCAIONS...........cvueueueveiiiiiiiiiiiietcieieictcttcicce e 99
Benefits of Al-generated JSX for React appliCations.............c.cccvvvveviiiiiinininicciiiiiiiiisicscccciscieeseinis 100
Al-powered debuggQing and [SX error fiXes.........ocowueieieiiiiiiiiiiieieisieiiiiscccese s 100
Advantages of Al-powered [SX deDUZGING..........ccvueviiiiiiiiiiiiiiiciciiiiictcise s 101
Al-powered cOde COMPATISON.cucuvveveieieiiiiiiiiicicieieis ettt 101
Importance of an Al-based APPIOACH..............ccvvviiiiiiiiiiiiiciccce s 102
Enhancing JavaScript development WOrKfIOWS...........cccvviiiiiiiiiiiiiiiiiiciiieeceeceece e 102
Al-generated JAVASCIIPE fUNCHIONS c......ovvviiiiciciciceic s 102
Al-driven JavaScript developmentccccooiiiiiiiiiii s 103
Seamless integration With REACEcccviviviiiiiiiiicicicicicicicccee s 103
Al-generated event listeners in JAVASCIPE.........cccoviuiiiiiiiiiiiiiicieicicccttcis s 103

Benefits of Al-generated eVent [ISTETETS.cccuiuiuiuiiiiiiiiiiiiiiiiciciciecicecc e 104

Al-generated JavaScript for React state Managementcccecevvevovccneiesieissisisccessseseesccenns 104

Advantages of Al-generated state MANAZEMENTcovvvuiiviiiiiiiiiiiiiiece s 105
Al-generated API requests inl JAVASCYIPEc.ccovvviiiuiviiiiiiiiiicieicicccctct s 105
Benefits of Al-generated API TEGUESEScoeueuiuiuiiiiiiiiiiiiiiiiicicicieccceicc s 106
Al-powered debugging and error fixing in JAVASCIIPE........ccvvveveviieiiiiiiicicieieecieicccee s 106
Role of Al in debugging JAUASCYIPE @ITOTScucvvviviiiicieiiiiiiicicicicie s 106
Role of Al in JavaScript AeDUZGINGcccvveueuruiiiiiiiiiiicieiicicccctc e 107
Al-powered JavaScript OPtIMIZALIONccovviuiueieieieieiciiccice st 107
AT tools for UI/UX design and ProtOtyPingcccecueeeeiueueurieuriiernieeiesssiessieesesessesssiesesessessssessssessenns 108
Impact of AL 0n UIJUX GESIGN........ocuviuiiiiiiiiiiiiciiiiciicicicte et 108
AL-enerated WITEfIAMEScccveivuiuiuiiiiiiiiiicie s 108
Al output using FIQMA Alc.ccoiiiiiiiiiiiiiiiiiiiiiit s 109
Benefits of Al-generated wireframes in UL deSIQTL.............ccccuvuruiuiuiiiiiiiiiiiiiiiiiiicciincccicsscecsaae 109
Case study: SaaS company using Al for WIreframingcccovvvvneniiiiiiiccssssieeccceee e 110
Importance of AI-driven WIreframing.........coocooiiueiiiiiiiiieieiicee et 110
Al-assisted layout optimization and design SUZGESLIONSceeueiiiiiiiiiiiiieiiiciiiiitiicieieseecs 110
Real-world impact of Al-optimized UL [AYOUES............ccccoovviviriiiiiiiiiiiiiicicccccs 110
Benefits of Al-driven layout OPHIIZALIONccueuiuiiiiiiiiiiiiiiiciciieccss e 111
Al-generated color palettes and typography SEIeCtiONcoceeeveieiiiiiiiiicieeiciiiicccee s 111
Benefits of Al-generated color and typography SUSESHIONS..........c.cccvvviviiiiiiniiiiiiiiiiias 111
Al-suggested colors powered by Khroma and Adobe Sensei..............cccvvvviiviviiiiiicciiciccecseeens 112
Al-generated typography pairing powered by FONEJOYccovvviiiiiiiiiiiiiiiciccicccceceees 112
Benefits of Al-assisted color and typography Selection..............cccoovvvviiiiiiiiiiiiiiiiicccas 112
Al-driven UX testing and user benavior ANALYSISccccvvveeeiiiiiiiiiiiiiiescciccisiess s 112
Key findings from AL ANALYSISccoovovoiiiiiiiiiiiiiiiiit 112
AI-SUGGESTEU fIXES ... s 113
Impact of Al-driven UX enNanCements.ottt 113
Importance of AL-Ariven UX GnalYSIScoovviviviniiiiiiiiiiiiiiiicctc s 113
Al-generated Ul components for prototyping...........cccceeeecceurieisisiiiiiiiiiinisissieiesisesscess s 113
Benefits of Al-generated UL COMPONENES...........cccueuiiiiiiiiiiiiiiniciiiiiiiicieis st 113
Leveraging React for dynamic front end projects ... 114
Impact of Al on React developmentcccviviiiiiiiiiiiiiiiiiiiiiisitcicicseecc s 115
Al-generated React COMPONENES............couvviiiiiiiiiicieieieieieitcctctete st 115
Benefits of Al-generated React COMPONENLES...........cccovviiiiiiiiiiiiiiiiiiiici s 115
Al-optimized state management in REACEccceiiiiiiiiiiiiiiiiiiciiiitcicc s 116
Benefits of Al-optimized state MANAZEIMENLE.............c.cviiuiuiiiiiiiiiieiiiiiiieicieceecse s 116
Benefits of Al-generated state MANAZEMENEccvuvueveieiiiiiiiiiciieiee e 117
Al-assisted |SX code fixes and debUggingc.ccccvvviviiiiiiiiiiiiiiiiiiiiiiiicccccc s 117
Benefits of Al-assisted [SX AeDUZGINGcvcvivviuiuiiiiiieieieiiiiiicccee e 118
Role of AL'in JSX AeDUZGINGvvviviiiiiiiiiiiciciiiciccittcis ettt 119
Al-generated API Calls it REACE.............ccoovviiiiiiiiieieiiiciicccectee et 119
Benefits of Al-generated API RANALETS..............ccovueuiiiiiiiiiiiiiiciciiiiitcc et 120

Al-assisted performance optimization in REACtccccovvruiuiieiiiiiiiiiiiiicce e 120

X0

Impact of Al 011 React PerfOrmaniCe............cccuvuiiviiiiiiiiiiiiicicicieicee s 121

Benefits of Al-driven React performance Optimizationcccvveeueieieiiiiicccieisieisieieieccceee e 121
Case studies of Al-enhanced front end appliCatioNS.........c.ccueveeeiriieeirinieeirteerece e 121
Impact of Al on front end develoPIent ... 122
Case study: Al-assisted blogQing platformncccccvvviiivviiiiiiiiiciiiciisc s 122
Al-powered enhancements in the blogging plAtformnccccvveieiiiiiiiiiiccccccce s 122

Key results of Al integration in the blogQing platformm............ccccovviviiiiiiiiniiiiiiiiiiiiiciiccccan 123

Case study: Al in portfolio Website DUILAETcvveveveviieiiiiiiieiececece e 123
Al-powered features in the portfolio website BUILETcovvvvviiiiiviiiiiiiiiiccce s 123

Key results of Al integration in the portfolio website BUIlder ... 124

Case study: Al-driven e-commerce SEOTEfYONEccoviiviviiiiiiiiiiieiiniccisct e 125
Al-powered features in the e-COMMEICE SLOTEfTONE........covvveieviiiieieiiiiiiceicictee s 125

Key results of Al integration in the e-COMMErce StOTEffONtcccovvviiiiiiiiiiiiiiciiccccccaae 126
CONCIUSION....cuiiiiii bbb 127
QUESTIONS ...ttt ettt et eett e et e eeteeeveeeabeeeteeeesaeebeeeaseeeaseeetseeseeeaseeeasaeessseesssensseesaeeaseesaseensseensseeseeens 127
EX@ICISES.....cuiviiiiiiniiicc e 128
5. Al for Back end Development ...t 129
INEFOAUCHON. ...t 129
SEIUCKUTE. ..ot a sttt n e 129
ODJECHIVES .ottt 130
Automating server-side coding With AT tOOIS........cccvueueuricuriniiieiniicirecree et 130
Al-generated server boilerplate COAEoovvmmmiieiiiiiiiiiicieie et 130
Effectiveness of Al-generated Server SCEUPcvvviiiviviiiiiiiiiiiiiiitcice et 132
Al-assisted code TefACtOTINGc.cvurveieieiiiiiiicicce e s 132
Benefits of Al-powered code Tefactoringc.cccvviviiiviiiiiiiiiiiiiiiiciiie et 132
Al-powered debugging and error AeteCtion.............coccvviiiiiiiiiiiiiiiiiiiiiiiiicicie s 133
Effectiveness of Al-powered deDUGING............covueviiiiiiiiiiiiiiiiiiiiiicicice e 134
Security enhancements thrOUGN Al..............cccovoviiiirieieieieiciiiiccee e 134
Effectiveness of Al-driven security enRancements.............cocoovvvviveieieieiiiiiiiiieieieieseeeee e 135
Building APIs using Node.js and Djangoccccoviiiiiiiiiiiiniiccccc s 135
Al simplifies API AU IOPINETE........cccvviviiiiiiiiiiiiiiiiiiieiiiicit st 135
Al-generated REST API USING NOME.JSccvueueueueieieieiiiiiiiicieteieieietetccisis e 136
Effectiveness of Al-generated REST APISccocvoiiiiviiiiiiiieiiiiiiiiicicisieiecccct s 137
Al-generated REST API using Django and Django Rest frametworkcccccovvvvvvceeesiniviniccnnnn, 137
Effectiveness of Al-generated Django REST APIScccccooviiviiiiiiiiiiiiiciiiiiitiicieceecccen 138
GraphQL API generation With Alcccoveveiuiumieieieieieieiiccee e 138
Effectiveness of Al-generated GraphQL APISs............ccoovvviiiiiiiiiiiiiiiiiiiiiiiciciciiitceieeeecc s 139
Al-driven API securityy enRANCEMENTS.c..cvvuiueieieieiiiiceceete et 139
Impact of Al on API security and NATAENING.............cccccvvviviniiiniiciiiiiiiisciet s 141
Al-generated API dOCUMENTALIONccviiiiiiiiiiiiiciciiiiic s 141
Effectiveness of Al-generated API doCUMENIAtION.cccvveviviiiiiiiiiiiiiiieicicccctcee e 142

Database management with Al-assisted QUETIES..........ccvucueiiiieiriiieiriieirie e 142

x0i

Al simplifies database MANAZEIMENEcccooviururieieieieiiicccee e 143
Al-generated SQL QUETIEScccuvuiuiiiiiiiiiiiiiiiieiciccctt s 143
Effectiveness of Al-generated SQL qUETIEScvvueueueieieiiiiiiiiiicicieieieiciisiccice s 144
Al-optimized qUErY PErfOTTIANCE.cvvviiiiiviiiiiiiiitiiiitcc e 144
Effectiveness of Al-optimized SQL QUETIEScvvueueueieieiiiiiiiiiieieieieicisiccce s 145
Al-assisted NoSQL query gENerationcccuuvueueuiiiiiiiiiiiiieiiiciciiisitsis e 145
Al-driven enhancement of NOSQL qUery §eNerationccoceeeveieiiviiccmnreisisisiisisiscicissssissesesccenans 145
Effectiveness of Al-optimized NOSQL QUETIEScocooveveiiiiieiiiiiiiiiiiiiicicieccccct s 146
Al-powered indexing SHALEGIES...........cvvviiiiiiieiiiieieieieieieitc et 146
Effectiveness of Al-powered indexing StrAtEZIEScccvvveviuruiveuiiiiiiiiiiiiiiecccccte s 146
Al-driven query security enNANCEMENESccvueueieieieieiiiicicicte e 147
Al-generated database SCHEMA AESIGNcccvoveiiuiuiiiiiiiiiiiiiicieicccct s 147
Effectiveness of Al-generated database SCREMASccvvveviucurueinisieiiiiiiiicces s 148
Al-driven performance MONILOTINGcovovvivviviieiiiiiiiiiiicicieis e 148
Effectiveness of Al-powered database OptimiZAtIONScovvururueieisieiiiiiiiiicesssieic e 150
Optimizing back end workflows with AL tOOIS..........cccceuriiiiiriiiiiiiiciiicic e 150
Al-powered debugging and error AeteCtion...........cvevvvvvvieiiiiuiuiieiiieiiiiiicceee e 150
Effectiveness of Al-powered debugging t00lSc.coovvveviviiiiiiiiiiiiiiiiiiiiiiciecccccicc e 151
Al-assisted performance MONTEOTINGcocovvvurueueieieiiiiiiiitcecte st 152
Effectiveness of Al-assisted performance monitoringc.coeovvvvveviiiisinnciciiiiiiiiisinisccccesissieeseens 152
Al-driven API request OPHIIZALIONc.ccovvuiucieieieieisiciicceciee st 152
Effectiveness of Al-driven API 0OptHMiZaAtionccocovoveviviiiiiiiiiiiiiiiiiiicieiecccccs s 153
Predictive scaling for cloud appliCations.............cccvevviviiiurueieisisisicicicccee e 154
Effectiveness of Al-driven predictive SCAlINGc.ccvovvviviiiiiieiiiiiiiiiiiiiisiciecccct e 155
Automated CI and CD pipelines for faster deploymentcccevvvvioiicvcinisiiiiiiiicceesseeecccens 155
Effectiveness of Al-powered CI and CD PiIpelines..............cccccevueiviiiiiiiiisininiiiiiiiiiiieieiesccccsessiee e 156
Al-powered security monitoring and threat deteCtionceevevvviiciccniiiesiciiiiciccee s 156
Effectiveness of Al-driven securityy MONTEOTINGcvvvviviiiiiiiiiiiiiiiitiicis et 157
Real-world examples of Al-enhanced back end SyStems.............c.ccccuviuricinicininicinicinicicscscsceicns 157
Case study on Al-powered API optimization at NetlixXccccocvvvvviiiiiiiniiiiiiiiiiiiiiicccccciicieeeeinn 158
Case study on Al-driven database optimization at AMAZON...........cccevevvieiiiiicieieisisieieeccccee e 158
Case study on Al-assisted fraud detection at PayPalccccoovviviiinniiiiiiiiiiiiiiciccciisciceeenn 159
Case study on Al-based cloud auto-scaling at UDercccovvuruvurieieieiiiiiiiicicessieieicccicise s 160
Case study on Al-powered security monitoring at Microsoft AZUTe...........c.ccccvvevviviiieiiniiiiiiiiiiicieiceinn 161
CONCIUSION ..ottt sa e 161
QUESTIONIS ..ttt ettt etee et e ete e et e et e eveeeaeeeeaeeeeteeeseeeaseeeaseeesseeaseeenseeenseeensseesssenssseseeenseesaseeesseenseeenseeens 162
BXOTCISES ..ttt 163
6. Debugging and Optimization With Al ... 165
INETOAUCHON. ... 165
SETUCEUT. ..ottt 165

ODJECHIVES ...t 166

Debugging web applications with AT tOOIS...........ccccuiiiiiiiiiiniiiiiic s 166
Traditional debugging versus Al-assisted deDUZZINGccvvvviiiiiiiiiiiiiiiiiiiiiiiccecccc 166
Challenges of traditional AeDUQINGcccvuiuiuiiiiiiiiiiiiiiiiiec e 166
Al's transformation of the debUGiNG PrOCESS.........ceuvvvveviiiuiuiiiieieieiiiisitcceciee e 167
Comparing traditional and Al-assisted debugg@ing methodscccocovuvvviiiciiiiiiniiiiiciiiccceinn 167
GitHub Copilot for Al-assisted deDUQINGccvvurvrueiiiiiiiiiiiiciicieieieieiecce s 167
GitHub Copilot’s role in enhancing debUggingccoveeiiriririiiiiiiiimiiiiiiiiiccicsncccssssssssssnaas 167
Importance of GitHub Copilot it debUGQINGccvvviviviiiiiiiiiiiiiiiciiicieieccct s 168
Profiling tools for debugging and OptimiZAtIONccocveueueveieieiiiiiiiicieieee e 169
Role of Al-driven profiling tools in enhancing deDUINGccvvvvvvviiiiiviiiiiiiiiiiicicceeecees 169
Case study on Al debuggQing in ProAUCHONcc.cvviuiviiiiiiiiiiiiiicccc s 169
Game-changing impact of AI-Ariven profiling ... 170
Identifying and fixing performance bottlenecks.............cccccooiiiiiniiiie, 170
Growing complexity of application Performarnceccovvvverevsieiiiiiiiiicesssieieccsee s 170
Al advantage in performance OPHMIZAtIONccvvuvvvuviiieiiiiiiiiiicieeeeeee s 170
Common causes of performance DOtHENECKS.cccvovvviviviiiiiiiiiiiiiiiiiciccc 170
Al’s role in detecting and preventing DOHIENECKScccvvuiveveieieiiiiiiiiieecccccee s 172
Al-powered performance OPtIMIZALION.c.ceuvrueuiiiiiiiiiiisieieiccct s 173
Comparison of Al-powered profiling t00ISccccciiiuiuiiiiiiiiiiiiiiiiccieccncc s 173

Al advantage in performance OPHMIZALION.c.cvueueveveveiiiiiiiiicieeieietescce s 174
Best practices for maintaining high-quality code.........ccooiiiniiiiiiiiiiiccccceee 174
Impact of Al-assisted tools on code quality iIMPrOVEMENt.........ccocvvevvviiiiiiiiriiieeiciiiieccee s 174
Core principles of high-qUality COde..............coovimiiiiiiiiiiiiiiiiieiccccc et 175
Importance of cOAING PIIICIPIESococvovveiiriiiiiiiiiii s 176
Al-assisted best practices for cOde qUALTEY..........ccviveiiiiiiiiiiiiiiiieiciciciccce s 176
Importance of Al-assisted code QUALTEYcccvviiiiiiiiiiiiiiiiiic 178
Case studies on Al in code quality MATNIENANCE.c.cveveviviiiiicieieieiecietccee s 178
Case study on Microsoft’s Al-assisted code quality MONITOTINGcooueveveviviieiiiiicieieicee e, 178
Case study on Al-powered code review in Facebook’s React frameworkcooeevovviceieiiiiiiciincnnn, 178
Using profiling tools for real-time performance monitoring............ccceeeiiiiininininiiicicce, 179
Role of Al-driven profiling tools in performance improvementccocvveveeivieiiiinieccesissieiesesccecnes 179
Al advantage in performance MONItOTING......ocvvuruiueririiiiiiiiicee e 179
Understanding profiling tools and their iMportancec.ccecvevveiiiiiiinisieiciciicicisee s 179
Importance of continuous monitoring in application performanceoevvvvivivvcceenssiiiiniccnnnns 180
Comparison of AI-Ariven profiling to0ls..............ccciiiiiiiiiiiiiiiiiiiicc s 180
Importance of Al-powered profiling tOOIScccvuveieiiiiiiiiiiiiiiiiicicccc s 181
Using GitHub Copilot for profiling and optimizationccccceeviviiiiininnicciiiiisiceeeecccseseas 181
GitHub Copilot’s role in performance OptimizZationcccccccucuiiicciiiiiieciciinccccsssssisssanans 182
Al-powered continuous performance optimization in APIScccccoovveveeniiiiiniiccceeesieecccnes 182
Importance of Al-powered API OptIMIZALION...........ccvvvviviiiiiiiiiiiiiicicicccece s 183
Case studies on Al-driven performance monitoring in ACHONc.coveueuciieiiiiiiisisinincccciieieeeeini 183
Case study on Netflix's Al-powered performance OpHMIZALIONcocccciuiiiuiiiiiiiiiiiiccccinaaes 183

Case study on Al-powered performance monitoring in financial SEYVICESccovrvvriiiircccrinaans 184

xvUiii

Importance of Al-driven performance MONItOTINGccccccueuvieirieiiiiicicieieiece s 184
CONCIUSION....cuiiiiiii bbb 184
QUESTIONS ...ttt ettt eet et eett e et e eaeeeveeeaaeeeteeeesaeesaeeesaeeasseesseeseeeaseeeasaeesssesssensseesaeeaseesaseensseensseeseeens 184
EX@ICISES.....cuiviiiiiiniicicc e 185

7. Data Preprocessing With Al ...ttt 187
INEFOAUCHON. ...t 187
SEIUCKUTE. ... b bttt a s 187
ODJECHIVES ...ttt 188
Data cleaning and transformation With AT OOLSccccruiuiurinicirinicieiceneceece e 188

Automating missing value NHANALINGcccovvvueueieieieiciiiiccce s 188
Traditional APPIOACH. ...ttt s 188
AT ASSISEATICE ..o 189
Detecting and removing OUIIETS............ccciviviiiiniiiiiniiiiicitsie ettt 189
Traditional APPTOACH...........cccuiiiiiiiiiiiiiiiiic 189
AT ASSISEATICE ..ot 190
Data type conversion and standardizationceeeeieioeiicreesieiiiiccce e 190
Traditional APPTOACH.cccucuviiiiiiiciiii s 190
AT ASSISEATICE ..o 191
Standardizing COIUTNI MAMES.ccccvvvviiiiiiiiiiiiiiiiec ettt 191
Traditional APPTOACH...........ccciiiiiiiiiiiiiiiici 191
AT ASSISEATICE ..ot 191
Final checks and Dalidation ..o 192
AT ASSISEATICE ..o 192
Writing a reusable cleaning fUnCHONccccoivviiiiniiiiiiiiiccice e 193
Traditional APPTOACH.ccccuiiiiiiiiiiiiiiiiici s 193
AT ASSISEATICE ..ot 193
Structured versus unstructured data CleANINGcceveveveviviiciiieieeeciecce e 194

ROIE Of ALL0O0IS ..ottt 195

Automating feature extraction and SEleCtioNccocuiueuiuiiiiinininiiiiiiccc e 195
EXAMPLE AALASEL ... 195
Feature extraction from categorical and text data.............cccccovviviiviiiiiiiiiiiiniciiicc 196

Traditional APPTOACH...........ccciiiiiiiiiiiiiiiiiiic s 196

AT ASSISEATICE ..ot 196

Feature extraction from date and HIMe ... 197
Traditional APPTOACH.c.cucuviiiiiiiiiiiiic s 197
Cyclical encoding suggested by CRAIGPTcccccoovvviiiviviiiiiiiiiiciiicice st 197
Creating interaction and polynomial fEAtUTES..............cevvveiivoiiuirieieieieecicce e 198
Traditional APPTOACH.c.cucuviiiiiiiiiiiici s 198
AT ASSISEATICE ..o 198
Automated feature selection teCHNIGUESccocciviviiiiiiiiiiiiiiiicie e 199
Traditional APPTOACH...........cccuiiiiiiiiiiiiiiiiiicic s 199

MOACI-DASEA SCLECEIONccvveeeeeeee et ee et et et ett ettt eta e ettt e et e et e e tte e vt e eate ettt e eraseeaeserssesaseenssans 199

Xix

AT ASSISEATICE ...ttt 200
Automating With PIPEliNes...........cvvueveieieiiiiiiiiiciciee e 200
Traditional APPTOACH.cocucuviiiiiiiiciiii s 200

AT ASSISEATICE ..o 200
Visualizing feature imMportancCec.ccccvvveiiviiiiiiiiiiciie e 201
Traditional APPTOACH...........ccciiiiiiiiiiiiiiiiiiic s 201

AT ASSISEATICE ..o 201
Visualizing data insights with ATHDIaries ... 202
Exploring univariate distriDULIONSccccoveoiviiiiiiiiiiiiiiiiieicsei st 202
Traditional APPTOACH...........cccciiiiiiiiiiiiiiiiicic s 202

AT ASSISEATICE ..ot 203
Comparing features using bivariate ViSUALIZALIONS.c.cvovevvuerrieieieieiiiiiicccee e 203
Traditional APPIOACH. ...ttt s 203

AT ASSISEATICE ..o 204
Visualizing correlation and feature relationships ...t 204
Traditional APPTOACH...........cccuiiiiiiiiiiiiiiiiic 205

AT ASSISEATICE ..ot 205
Automating EDA TEPOTES........cvoviviveieieieiiiiiiisete e 205
Popular tools for automated EDA.............ccccccoooiiiiiiiiiiiiiiiiiiiicciiccctsec 206

AT ASSISEATICE ..o 206
Visualizing feature importance from models..............ccccovviviiiiniiciininiiiiiciiitsct e 207
Traditional APPTOACH.cccuiuiiiiiiiiiiiiiii 207

AT ASSISEATICE ..ot 207
Creating dashboards for interactive ViSUALIZATIONc.covoveviecurieieieieiiiiiicccce e 208
Tools for building AAsNDOATAS..............cvviiviiiiiiiiiiiiic s 208

AT ASSISEATICE ..o 208
Unsupervised learning and clUSTEIINGcccciiiiniriiiiiiiiiiiiiccc e 209
K-means clustering in PraCLICe...........cocovviviueurueieieeicte ettt 210
Traditional APPTOACH.c.cucuviiiiiiiiiiiicci s 210

Al assistance in enhancing k-means clUSETING..........ccocovvvriiiiiiiiciiniiiiciiccecc e 210
Hierarchical clustering and dendrograms. ..ottt 211
Traditional APPTOACH.ccccuiiiiiiiiiiiiiiiiicic 211

AT ASSISEATICE ..ot 212
Density-based clustering with DBSCANcccovmimiiieiiiiiiiiicceieee et 212
Traditional APPTOACH.c.cucuviiiiiiiiiiiicci s 212

AT ASSISEATICE ..o 213
Evaluating clustering qUALTIYocccvviiiiiiiiiiiiiiiicicett st 214
Traditional APPTOACH.cccuiiiiiiiiiiiiiiii 214

AT ASSISEATICE ... 214
Visualizing clusters in 2D With PCAccovviviiiiiiiieeiceeetcee s 215
Traditional APPTOACH.c.cucuviiiiiiiiiiiicci s 215

AT ASSISEATICE ... 215

Use case: CUSTOMET SEGIMENEALIONc.couiuiiiiiiiiiiiiiiiiieiiiiieiis ettt 216

XX

Traditional APPTOACH...........cccuiiiiiiiiiiiiiiiiicicc s 216

AL ASSISEATICE vttt 217
Implementing clustering techniques wWith AT tOOIScoucceuiieiriniciricireeece e 217
Enhancing clustering implementation with AL t00S...........c.ccccccviveiiiiiiiniiciiiiiiniicicieciiccseei 217
Building clustering pipelines with GitHub COpPilot...........cccoovvmmreieieieiiiiiiiiccceesecccceee s 218
COPIIOL ASSISEANICE c..v.vvvvvvicttcittct ettt st s s sb s sa s sa s 219
Guiding parameter selection wWith CRATGPT ...t 220
Suggested code from CHATGPTccooiiiiiiiiiiiiiiiiiccc s 220
ChatGPT's contribution to clustering workflows.ccccevevvcurueeisieiiiiiiiicceee s 220
Implementing DBSCAN wWith AL SUPPOTE......ccoccoviiiviiiiiiiiiiiiiiiiiiiciiieisisctset s 221
Al-supported DBSCAN WOTKFIOTc.ccuiiiiiiiiiiciiiiicicicicicic s 221

Copilot and ChAtGPT SSISEATICE.cucueveviviiiiiiicicicieieie it 221
Plotting the k-distance graph with ChatGPT QUIAANCE............ccccvvivviiniiiiiiiciiiiiiccicecc s 222
Hierarchical clustering with Al recommendationsccocveueveveieieiiiiiiinieieeisieiiiseeee s 222

AT F00L ASSISEATICE ... 223
Automating clustering tasks in pipelinescccccovvvvivviiiiiiiininiciiiiiiiiicics 224
Sample K-Means PIPELINe.............cccucuiiiiiiiiiiiiiiiiiiiiiii s 224

AT E00L ASSISEATICE ... 224
Combining clustering with downstream applicAtionscoevvveeieieiiiiiiicceesieecc e 225

Al tool support for post-clustering interationceeeeereieieieeeriiiseeeee s 225

Case studies in data preprocessing and clustering for ML projects..........ccccoevueuruiieiiinnniniecicnccnene. 226
Customer segmentation for @ 1etail CHAINccoceveueveieieiciiiiccee e 226
Employee attrition 1isk ANALYSIS.........ccoovvuiiviiiiiiiiiiiiiiiiiieit st 227
Fraud detection in online tranSACHONSccccccvviiiiiiicieiiiiiciciiiiicc s 228
Healthcare patient grouping for personalized Hreatmentcccoceovvveiinivcininiiiiniicisiciiectsec 229
Hands-on examples for structured and unstructured datacooovoirriiiiiiie 230
Al-assisted clustering with structured employee data...............covvvvviveiiiiniininiiiiiiiiiiciiecicec, 231
Al-assisted clustering with unstructured text AAta............ccovvveveveieiiiiiiiiiieeececce s 232
Al-assisted clustering of unstructured iMAZe dAta...........cccccvoviviveiniiiiiiiiiiiiiiiicsc 233
CONCIUSION. ..ot 234
QUESTIONS ...ttt eet et ett e et e eeaeeeveeeaaeeeteeeesaeesaeeesaeeasseesseeseeeaseeeasaeesseeesssensseesseeaseesaseeesseensseeseeens 234
EX@ICISES.....civviiiiiiniiicicc e 235
8. Building and Training Machine Learning Models........ccouvnivirnisunsniniisinisnnncsnsincsssiscssssescssssssscssens 237
INEFOAUCHON. ... 237
SEIUCKUTE. ..ottt s e 237
ODJECHIVES ...ttt 238
Automating ML pipeline creation With Al.........cccceiiiiniiiniieiieccreeeece e 238
Pipeline components and Al AULOMALIONc.cvveviviiiiiiiiciciiieiecicccce s 238
Illustration of a binary classification pipeline using SCikit-Iearmi.........ccccovevivviviinviciinciciiiiiicci, 239
Advanced pipelines for handling mixed feature tYpes.............cocovevvveivieviicirieisieieiiiiceeee s 240
Guidelines for effective prompt usage in CHALGPTcocovvviiiiiiiiiccaas 241

Prompt examples for best PrACHICE............cooiviviviviiiiiiiiiiiii 242

xxi

Beyond scikit-learn pipelines in Keras and PYTOTCH..............ccccvvrueieinieiiiiiiiiiccessieieccciciee e 242
Preprocessing and model integration Using Keras.............ccccovvvvviviviniiiiiiiiiiiiiiiccccsccnians 243
Modular architecture and DataLoader using PYTOrCHcoveveviiiiiiiiiiiiieieccee 243

Real-world example of Al-accelerated retail churn MoOdelingcccocevvvvvviiiiiiiiiieiiiiiiiiiciceeenn 244

Selecting ML algorithms with Al-assisted guidance............cccccceurieiniiiiinicininicicceccees 244

Criteria for selecting an ML algOTIERIccouiviiiiiiiiiiiiiiiciciccccccc et 244

Prompt driven algorithm recommendationcccoovvviiurueiiiiiniiiiiiiiicceee e 245

Examples of Al-supported algorithin SeLeCtiONcccovevvviiiieuiiiiiiiiiiiiicicicccccct e 246
Classification With SCIKIt=-IEATTL.............ccccciuiiiiiiiiiiice s 246
Regression With SCIKIE-IOATTL.............ccocvoioiiiiiiiiiiiiicic s 246
Classification with Keras using deep [earning.............ccccccciuiiicuiiiiiiiciiiiiniccinseeississsseisssanans 246
Regression With PYTOTCH..........ccccccooiviviiiiiiiiiiiiii s 247

Advanced BYDYId PrOMPL........c.covviuiiiiiiiiiiiiiiccccs e s 247

Al recommendations on interpretability vS. performance..............ccoovvvvvieiinncciiiiiiiiiciiieecccseis 248

Use case of predicting loan default with Al-driven QUIAANCEccceveveivviviiiiicicieecieicccc e, 249

Building and training classification models...........cccccooiiiiiiiiiii 249

Data preparation for classifiCationcocccveioiiuiurieieieiiiiiiiiccce e 249

Model construction With AL E00ISccccviiiiiiiiiiiiiiiiciciciccc 250
SCIKIt=10ATTL CLASSIFIET ... 251
Keras neural network ClASSIfIET ...ttt 251
PyTorch Binary CLASSIfIETcccovoviiiiiiiiiiiiiii s 251

Evaluating classification performancecccoovrreeeininiiiiiiicicieiesieeiesssis s 252

Recommended metrics based on dataset CRATACETISEICS............ccovviviviiiiiieiiiiicicicicic e 252
Scikit-learn evaluation eXAmMPIe..............cccccciiiiiiiiiiiiicce e 253
Keras model €DAIUALIONc.ovvveviiiiiiiiiieiciicce s 253
PyTorch model €0AIUALIONccccovviiiiiiiiiiii s 253

Use case of Al-assisted model building for email spam detectioncccevvvvveeeieieiciiviciccceein, 253

Designing and training regression models............ccccocoiiiiiiiiiiiii 254

Data preparation for 1€gressSion tASKS............cccvvviuiurueieieieiiiiticcccee et 254

Model constriuction fOr 1EQIESSION..........c.cueueuiuiuiiiiitiiiieieieicict s 255
Linear and ensemble models with SCIKIE-IEATTLccevviiviiiiieiiiiiicieiicsice s 255
Neural network for regression With KEFASccccceeeciciiiiieieiiiiceeeeee s 256
PYTOTCH TGTOSSOT ... 256

Evaluating 1egression MOMES.............ccvueueiiiiiiiiiiiicicicieicie et 257

Use case of Al-powered house price predictioncccceevevveinueueecciiiiiiiiinieeecccssssese s 258

Implementing Multilayer Perceptron models............ccoovoiiiiiiiiiniiinii s 258

MLP architecture And COMCEPES.......coouvmeirimiiirieieiiieietsieiet ettt 258

Output, task, and 0SS fUNCHON SUMMIATYcvvveveiiiiiiiicieieissieiec e 259

MLP for classification Using Kerasc.cccciviiiiiiiiiiiniiiciiiiiiiiiiccsecicss st 259
Key functions of the MLP M0deL...............cccovviiiiiiiniiiiiiiiiiitctct s 260

MLP for 1egression USTNG KeTAS...........cccvvururueieieiiiiiiiiiiicieieie et 260
Key components and CONSIACTALIONSc.cvvurueveiiiiiiieieieiieeie ettt 261

MULP USING PYTOTCH ...ttt 261

xxii

Factors contributing to model effeCtivenessccccvveiiiiiiiiiciciiiiicciecce s 262
Regularization and optimization tiPs..........cccveeeeieiiiiiicicieiee et 262
EQFLY SEOPPITIG .o s 263
Batch NOTMAIIZATIONcoouiiiiiiiiiiiiii s 263
Learning rate SCHEAUIINGccccovvviviviiiiiiiiiiiiiitii s 263
Use case of predicting loan default with Multilayer Perceptrons..........ccucvvivvinvciineicinniniieiiiinn, 263
Al-assisted development WOTKFIOW............cccvueviviiiiiiiciiieicccce s 263
Building and fine-tuning convolutional neural NEtWOrks...........cccooviiiiiiiiiiiiiiiie, 264
Evaluation for classification MOAelscccccivviiiiiniiiiiniiiiiiiiiieiiiecet e 264
ACCUTACY vttt ea e 264
PTOCISION ..ottt 264
RECAIL. ... s 265

FI U SCOTC..ovttetettet e 265
COMPUSION THAFFIX ..o 265
ROC-AUC ... 265
Evaluation for 16975101 MOAELSccveviviiiiiiiiieieieieic et 266
Mt ADSOIULE EYTOY ...ttt 266
MEAT SGUATEA CTTOT ..ottt 266
Root 1a1 SGUATE ETTOT 1...vvviiiiiiciciici s 266
RSGUATEA ... 267
CNN fUNAATIENEALS ...ttt 267
Key building DIocks Of CININSc.cvcveviiiiiiiiicicieiess et 268
DTOPOUL ..ot 268
Key hyperparameters i CINNScccviiiiiiiiiiii st 268
Preprocessing notes critical for Performance ...t 269
Implementing CNN i1 KETGSccvovoviioiiiiiiiieieiiieieicccicee e 269
Functional breakdown of the CNIN MOdel..............cccoovviviviiiniiniiiiiiiiiiiicas 269
Implementing CNN i1 PYTOVCH........ccoovviiviiiiiiiiiiiiiiiciciiieiee et 270
Ky IGRIIGHES ...ttt 271
Transfer learning with pretrained MOAELScoooveeurieieiiiiiiiiiccce s 271
Optimal use cases for transfer IeArNINgovveiiiiiiiiiiiiccc e 272
Use case of image-based disease classifiCationcccouvviviiiininiiiniiiiiiiciicciscteee e 272
Workflow highlights with AL SUPPOTT........c.ccviiiiiiiiiiiiiiiiiiiiiiicciciccc s 272
Training and validating models effectivelyccccocoviiiiiiiiiiiie, 273
Key concepts in model trAINING..........cccccovviiviiiiiiiiiiiiiiset e s 274
EPDOCHS ot 274
BAECH STZE..ovvvieeiiete e 274
LOATTIING TALC ...ttt 274
LOSS fUTICHION ...t 274
OPFIUIZOT ..ottt 274
Implementing training in Ker@s............ccoovveueueieiiiiiiiiiiiicicictce st 275
Common components in model training WOrkflowsccovvvvviiiiiiiiiccas 275

Implementing training in PYTOTCHccccovviiviiiiiiiiiiiiciiiciiscet et 276

Key functions of the PyTorch training COAe.............cooovviviviviniiiiiiiiiiiiiiiiiicctccccsscsias 276
Validation teCHNIGUESc.eveveveiiiiiiicicicieie e 277
Train and validation SPIit.........cccccciviiiiiiiiiiiiii s 277

K-fold croSs-0alidationccovviviviiiiioiiiiiiiiiiiiiiii s 277
SHALIfIEA SAMMPLINGovvivviicitiitttt b 277

Using TensorBoard and viSUALIZALIONSccccovviiiiiiiniiiiiiiiiiciciie st 278
RUnning TensorBOAT............ccveviviiieiiiiiiiieieietece e s 278
Importance of training VISUALIZATIONS...........cccvueieiiiiiiiiiciiicicice s 279
Hyperparameter tuning with AL TOOIS..............ccveeieieieieiiiiciciecic et 279
Key hyperparameters t0 FUNEcccvviiiiiciiiiiiiiiiiiicc 279
Performance evaluation Metrics..........ccoviiiiiiiiiiiiiiiicc s 280
Visual evaluation teCRIIGUES.............ccoveueueieieieieiiiiccice e 280
LOATTING CUTTES ..ottt 280
Confusion MAtrix NEAHMAP...........cuvvvviviviuiiiiitiiiiiictct sttt 281

ROC and precision-recall CUTTESccouviviviiiiiiiiiiiiiiiiiiit s 281
ReESIAUAL PLOLS ... 281
Advanced prompt for ROC VISUALIZALIONc.cveviveviriririiiiiiiieieiciciceeeeesse s 281

Model cOMPATISON SETALEGY ...vvviriiciiiiiiiiiiiiciiieiet sttt 281
Human-centered eVAIUALIONcccuviiiiiiiiiiiiiiiciicict s 282
Key tAKCATOAY ... 283
Real-world use cases of ATl in ML trainingcccccoveiiiiiiiiiininiiicccciiiseecee e 283
Automated model building in fINteCH.cccvviiiiiiiiiiiiiiicccc s 283

Al assistance and WOTKFIOT.............covviviiiiiiiiiiiiicicccc s 284
Outcome and DUSINESS TMPACEcuvvevivririiriviiitiiicicicici sttt 284
Healthcare image classifiCationcoccoiviiiiiiiiiniiiiiiiiisetse s 285

Al assistance and WOTKFIOW............cccccciiiiiiiiiiiiiice s 285
Outcome and clinical TIPACEccvuiiiiiiiiiiiiiiiii s 286

Retail demand foreCastingooveueveiviviiiiiiiieieieeeete e s 286

Al assistance and WOTKFIOT.............covveviviiiiiiiiiiiccc s 286
Outcome and DUSINESS VALUEcccvcveiiieviiiiiiiitcicieieiccc s 287

Al augmented education ANALYHICSccovvvviucieieieieieiicccce e s 287

Al assistance and WOTKFIOT.............covviviiiiiiiiiiiiicicccc s 288
Outcome and educational TIPACE............vvveviviiiiiiiiiiiiiiic s 288

Best practices 1earned ACT0SS USE CASESccoirivuiiiiriiiiieiiiiiieicisie ittt 289
CONCIUSION. ...t bbbt 290
QUESTIONS ...ttt ettt et et ett e et e eveeeveeeaaeeeteeeetseesaeeesaeeaseeasseeseeeaseeeasaeessseesssensseeseeeeseesaseensseensseenseeens 290
EX@ICISES.....civviviiiiniiicictc e 291
9. Deploying Optimized ML MOELSccuviiiriiinriiniiniiinniiiiiineiisiiisissssiinssiissssssssssssssssesssss 293
INEFOAUCHON. ... 293
SEIUCKUTE. ..ottt s 293
ODJECHIVES ...t 294

Fine-tuning ML models using AL tOOIScccccoiiiiiiiiiiiiiiiiccc s 294

xXX10

Optimization techniques for deployment 1eAdINESScovuvveievciiiciiieieisisiiicciccce e 294
QUANEIZATION .ttt et ettt e at ettt ekt at ekt ea e bttt e bt et eht et eatenaeebtenaeestenteennens 294
PrUTIIG (oo 296
Knowledge diStillAtIONccovviviiiiiiiiiiiiiiiiiiii s 296
Model format COMUETSIONvvueuiueiiiieiieieieicecie ettt 297

Al-assisted wOrkflows in fiNe-FUNINGcoccoviviiiiiiiiiiiiiiciccie s 297
CHALGPT USC CASES....vvvevvcvercrerinctcectctct ettt st ss s ss s s s s es s s sa s sa e s aesnas 297

GitHUD COPILOE USE CASES ...ttt 298

Performance evaluation post-0ptimiZationccvvvveveiiiiicuiiiiiiiiiiiicisieccc s 298

Deployment strategies for scalable ML SOIUHIONS..........ccccoviiiiiiiiiiiicc 298

Local API Aeploymentcccviiiiiiiiiiiiieiiiiciiiititsis et 299
KeY AAUATEAGES. ... 299
AT 001 ASSISEANCE ...v.vvvvvvrrctctetetetetct e 300

Containerized deployment With DOCKETccovvururueieieieiiiiiiiieieecestce s 300
Build and run the CONEATNETcccoovviviiiiiiiiiiiiiiitc s 300
Deployment tATGEEScvuiuiuiuiiiiiiiiiiiiiiiictctct b 301
AT 00 ASSISTANCE ... 301

Model serving With TOTCRHSEIV.ccvueuiiiiiiiiciiiiicieieicct e 301
Deployment workflow with TOFCHSETTEccvvucuiiiiiiiiiiiiiiiiiiicciceccc s 301
Key features of TOTCHSEIVEc.ccccovvieioiiiiiiiiiiicii s 302
WHEN 10 USE TOTCHSEIVEooveieviiiiicici s 302
AT H00L ASSISEANCE ...v.vvvvvvvrctctetetetetcte et 302

Cho0sing the 1ight SEYALEQYccovvueuiieieieiiiciciicccce e 302

Cloud-based ML deployment and management.............cccccceiiinininiiiiiiiiiccc s 303

Significance of cloud-based model deploymentccccovvvvviiurieiiniiiiiiiiiiccee e 303
Key benefits of cloud deploymentc.oovueveiiiiiiiiiiiiee s 303

Deploying PyTorch models using AWS SAGEMAKETcccvvviviiiiiiiiiniiiciiiiciiicicceccccte i 304
Step-by-step deplOYIMENt PYOCESSccvueueuiuiuiuiiiiiiiiiiiieeieicicir e 304
AT F00L SUPPOTT .ot 305

Custom container deployment with Docker 0n SAZEMAKETccevvveiiiiiiiicicisisisicieicccceee e 305
BYOC deployment WOrKfIOTW ..ottt 305
AT H0OL SUPPOTE ..ot 306

Monitoring and management in SAFEMAKETccccveviiiiiiiiiciiiiiiiiiiicis e 306
Key monitoring and management fEALUTESc.cocvoioieiiniiiiiiiiiiitccctsts s 306
AT F00L SUPPOTE ..ot 307

Al tool support for cloud deploymentccvvuveieieieiiiiiiiicecc s 307
TOOI-TDISE USE CASES ...e.vvveeiiiiiiictcici ittt st a bbb a s sh s sa b 307

Practical examples of end-to-end Al deployments ..., 308

Sentiment analysis model deployment with FastAPI and Dockercccocvevenniiieiciiiicceeiciians 308
TeCHTNOLOGY SHACK.......oveieiiiiee e 308
WOTKFIOW OUCYTDIOTD. ...ttt 308

Real-time image classification with AWS SAGEMAKETccvvviiiiviiiiiiiiiiiiiiiiiicceccccc 309

TECHNIOIOGY SHACK..........eeiiiiiiiiiiic s 309

xXX0

WOTKFIOW OUETTIOTD........oeeiiiiiiiiici s 309

Al tool benefits (SUPPOTHING LAYET)c.cvvviiiiiiieiciiiiieiceiec s 310
COMPATISON Of USC CASES ..vvvvviiiiiicicieieteis ettt 311
CONCIUSION. ..ottt ettt a b a st a e s an e 311
QQUESTIONS ..ttt ettt ettt ettt e eette e e e tte e e eeaaeeeeaeeeeeabeeeeestaaesesseseeessseeesseeeenssseeenssseeesssseeassesesnsteseeasteeeesseeennnees 311
EX@TCISES....cuvviiiitiectet ettt ettt ne s 312
10. Real-World ApPPLiCations......ccccninininininiiinssiisisiisisiisiisisitssissisiisissssstssiistssstssssssssssssssssssssssssssssass 315
INErOAUCHON. ...ttt 315
SEIUCHUTE. ...t 315
ODJECLIVES ..ttt bbb e bbb 316
End-to-end Al-assisted ML WOTKFIOWSccccciiiiiiiiiiiiiiiiiiicc e 316
Data ingestion and preparation with Al ASSISTANCEcccccevueviveiiiiiiiiiiciiicisisccie e 316
Model design and training with TeNnSOTFIOWccvveeieieieieiiiiiiiicieieee e 317
Model evaluation and (HerAtionccccoeeuiuiuiiiiiiiiiiceecc e 317
Model export and integration With AWS............cccovveimeeieiiiiiiiccce e 318
API deployment using AWS Lambda and TensorFIOw Liteccoovvvviiieiencciiiiiiiiiiiisicicccccsnas 318
Monitoring and feedbDack [00PS.............ccvvuvueueieiciiiiiiiiicccee e 318
Al-assisted and cloud-based ML development workflow at a glance...............ccovvvvveievneccicennenn, 319

Al for full-stack web developmentc.cccucuiiiiiininiiiiicii e 319
Project overview of an Al-enabled product recommender SYStem...........ccvveveveeieiiiovicceeeiesieieiicceenes 319
Front end development with React and Al ASSISEANCEccccovveiviiiciiniiiciiiiiiiisciseciseec 320
Connecting React to TensorFlow models 0ia AWS..........cccovvvvmieieseiiiiiiiiccce e 321
Styling and Ul responsiveness With Al ASSISEANCEccccceviviveiiiiiiniiiciiieisisccsiectsecee i 321
Deployment to AWS with CI/CD fHEeQIAHIONc.cvucvreiciiiciiiciciicicisiceiices s 321
Deployment options across the StACKceeueeiiciieicc e 321
Al-assisted pipeline overview for full-stack iNteQrationccoocevevveiinincininiiiiiiciieciesec 323
Impact of Al-assisted full-stack development..............cccoovvueurviieieiiiiiiiiiiceee s 323
Integrating Al tools in collaborative Projects ... 324
Accelerating prototyping ACT0SS TOIEScvweueueieieieiiiiiiiiiieeie et 324
Enforcing unified coding standards with COPIlOtcocvivivviniiiiiiiiiiiiciiiciccc e 325
Enhancing documentation and code COMPTENENSIONccvvvurueieieieieiiiiiiiicieiesissesccesee s 325
Debugging and issue resolution in SHATed Projects.........cciivveiiiiiiininciiiiiniscisisetsieec e 326
Auto-generating project artifacts and DevOPS ASSELScoveweveveieieiiiiiiiieieieeieisieeccee s 326
What Al can automaticallyy QEeNEYALEcccvueiviviiiiiiiiiiiiiiiiiccc s 326
Improving Git workflows and version control Practices..........uvvveiinvciniviciiniiiiieiiieiieec 327
COllADOTALION MALTIX ...ttt 327
Redefining collaboration through Al integration...........ccccvviviiiiviniiiniiiiniicicisccsetcc s 327
Teams embracing Al-assisted collaboration TePOTt ... 328

Case studies of industry applicationsccccciiiiiniiiiiiii s 328
Amazon’s personalized product recommendations With Al.............cccovvviiinniiiinniiiiniiciieiiicci, 328
Real-time health monitoring system for elderly CAre.............cocuviveiiviiiccieiceieiiiccee s 329

Al-enabled customer SUpport CHATDOLccccvvviiiiviiiiiiiiiiiic e 330

xXx01

Scalable fraud detection for a payment gAtEIAYccevvveviiururieiiieieiiiiiciccce e 330
Adaptive learning platform for SCHOOIScccvviiiiiiiiiiiiiiiciccccccc s 331
Insights from these APPIICALIONSccocvoviiviiiiiiiiciii s 332
Lessons learned from practical implementations............ccccocerueiiiiiiiniiiicc s 333
Start small and scale StrAteGICAILY...........c.cccovvvviiiiiiiiiiiiiiciciccccc 333
BESE PIACHICES ..ot s 333

Al tools are pair programmers, 10t 1ePIACEINENLEScovviuiuereiiieiiiiiiiceee e 333
BESt PIACEICES ...ttt 334

Align front end and ML teams from the Start.............ccocvviviiiiniiiiiiiiiiiiiiccccc s 334
BESE PIACHICES ..ot 334
Optimize for deployment, 10t JUSE ACCUTACYc.cvovoviucurieieieiiiiiiiiccice e 334
BESt PIACEICES.c..vvvveicittct e 334

AT 0L ASSISE ...ttt s 335
Prioritize observability and MONTLOTINGcccvviviiiiiiieiciiiiiciicccctcc e 335
BESE PIACHICES ...t s 335

Design for realistic COLADOTALIONcucveviviiiiiiiiicicieieicic et 335
BESE PIACEICES ...ttt 335

Reuse prompts and patterns ACroSS PrOJECtS.........cuviiiiiiriiiiuiiiiiiiiiiiiiieieicicccts s 336
Sample TeUSADIE PTOTIPES.......c.cvuviiiiiiiiiiiiiiiiii e 336

Expect a learning curve With AL t00IS.............ccovuiureieieiiiiiiiiiiiccee e 336
BESE PIACEICES ...ttt 337

Choose cloud tools based on wOrkflow SIMPLICIEY..........cccccvvvvviieiiiiiiiiiiiiiiiiecccc e 337
BESE PIACHICESvviiiiiiiiciit s 337
Measure developer efficiency, 1ot just MOdel MEITICSocovvvvviviiicirieieieisicieictcee e 337
Real-worTd TIPACEoovieiiiiiiic s 338

Key takeaways from Al-assisted development.............cccccvveciiiiiiiiiiiiiniiiiiiiiicscic e 338
CONCIUSION ...ttt sa e 338
QUESTIONS .ttt eee et ettt e et eeveeeaeeeeaeeeeteeeseeenseeeaseeeseeeaseeeseseaseeessseesssensssenseeenseesaseensseenseeenseeens 339
BXOTCISES ..ttt 340
11. Future Innovations and Ethics in Al ...t ssssssssssesssssess 341
INETOAUCHON. ... 341
SEIUCKUTE. ..ot a s s e 341
ODJECHIVES .ot 342
Emerging technologies in Al-assisted programming............cccccccevuiueurenicrriniemeiniciesieeseceseeessecenes 342
Ensuring trust, traceability and code integrity with bIOCKCRAINccooovviericiiiiiiiciiccccce 342
Role of blockchain in Al-assisted Programmingccuveeeeieirieirisieeeeesse s 342
ReAI-WOTIA USE CASE ... 342

Al cloud platforms for scalable intelligence on demand.................ccccocovvvvviiiiieniiiiiiiiiiiciiiecccss 343
Essential role of AL cloud PIAEFOTTISc.cucuiiiiiiiiiiiiiiiiiiiiicicccc s 343
Real-world Workflow 11 ACHOMccooviiiiiiiiiiccc s 343

Al tool integration with Copilot and ChatGPT excellernCeccovvvvvvvieieeieiiiiiicceeeseiecccens 343
Looking ahead from infrastructure t0 intent.........ccoovvvvieiiiiiiiiiiiiiiiicicicieicccce 344

Intelligence at the periphery through the Internet of Things and edge Al.............cccovvvvciccvnninnnnnnn. 344

Empowering Al-assisted development through I0T and edge Alccccccoovviiiiiiiiiiiiiciciaes 344
Practical scenario of smart agriculture at the edgecccvveveveviveviiiiiiiieeeccccee s 345
ChatGPT and Copilot contributions to edge Al developmentcovvvviiiiiiiiiiiiiiicans 345
Essential edge t00IChaAINS 10 KHOTWc.cucvviviiiiiiiiiiiiiiiiiciiiieitse et 345
Understanding its SIQNIfICATICEcccuiuiuiiiiiiiiiiiiiiiciccc s 346
Synergistic impact of building smarter systems t0GEtNercvveveiviviiiiiceieeeieeccee e 346
Smart city scenario showcasing the power of CONTVEIGENCE.vvrrivirrvrviiiiriiiiiiriiecssas 346
New role of developers as orchestrators of intelliQerCeuvivvvviiviiiiiiiieiiccccecce s 346
POtWer Of COMVETGEIICEc.cvviiciiiiiiiiciiiicc s 347
Ethical challenges and considerations in AT deVelOpmentc..ccceeueurnecreinecinnicieireceeneceeneceenn. 347
Bias in Al-generated code and data MOdelS................coeveveioviiiiciiicieieicciiccccee e 347
Practical examples 0f Dias i1 ACHOM ..ot 347
Recommended actions for developers ...ttt 348
USiNgG AL 0 CHECK TESEIf ..ottt s 348
Authorship and accountability in Al-generated COeoovvviiiiiiiiiiiieieiiiicicceee s 348
Understanding the legal and operational 1iSKScccvvviviiiiiniiiiniiiiiiciiciscce 349
Best practices for managing accoOUntabilitly ..o 349
Strategic advice for teams and OYGANIZALIONSccvvuiuiuiiiiriiiiiiiiiiiicccc s 349
Privacy and prompt SENSTHUIEYc.c.evvveiiiiiicieieieieete s 350
Understanding the 16l TISKS...........cvvveiiiiiiiiiiiiiiiiiciicccccce s 350
Staying safe with practical mitigation SEALEGIES.ooveviviuiuiviiiriiiiiiiiccc s 350
STMple 1ULe Of RUIMD ..ottt 351
Over-reliance on Al and developer sKill AHTOPRY...........ccccovvviniiiiiiiiiiiiiiiicciicisccec 351
Risks of deprioritizing SKillS..........cccceiiiiiiiiiiiiiiiiiiciiiccc s 351
Practical mitigation SHYAEZIEScovvvviuiueieieieieiiieicccce e 351
Institutional responsibility in teaching Al [IteraCYcovveiiiviiiiiiiiiieeccccee s 352
Transparency, explainability, and debugQabilitycccccvvvvviviiiiiiniiiniiciiicisiccee i 352
Impact of code without explainabilityccccccciiiiiiiiiiiiiiiiiiiicc s 352
Best practices for making Al output explaingblecccoovvviiioiminieiiiiiieiiiiieeece e, 353
Misuse of Al in high-stakes or [0w-context AOMAINScoveveviiiieirieieieieicieietccee e 353
Understanding where things O WIOMGc.cvvvvevrievirireieieiitiicteieieteete et 353
Practices of responsible development ..ot 353
Using Al to guide ethical tRINKINGcovviviiiiiiiiiiiiiiiciccccc s 354
Need for ethics-aware AL t00IS............cccvviviiiiiiiiiiiiiiiiciiiecicte e 354
Designing the next generation of ethics-aware AL 00ISccccccciiiiiiiiiiiiiiiccccccan 354
Building better SYstems t0GEHET.........ccvovimeieieiiicieieicccee e, 355
Balancing automation with developer Creativitycococcvceurerierrinceinireerceeeee e 355
Redefining developer creativity in the Age Of Alcccccvviviviiiiiiiiiiiiiiiiiiiciisc s 355
New dimensions of creativity enabled by Al.............ccoovvviiiiiieiciiiiiiiicccee s 355
Real-world creative Workflow With Al..........ccccccviiiiiiiiiiiiiiiiiiiciic 356
Risks of over-automation and creative SEAGNALIONccccvvviviiiciniiiciiiiicisiceiie s 356
Signs that creativity 1S fAAINGccccoviiiiiiiiiiiiiiiiiiiiicc 356
Understanding the CAUSEcccvuieiiiiiiiiiiiiiiiciiciice e 357
Cultivating creativity alongside AULOMALIONc.cvveveveveveiiiiiiicicieiee e 357

Best practices for creative empOwerientvvwviirruiririiriirscscsiss s 357

xXX01ii

Prompting for creativity with a quick COMPATISONccooviiiiiiiiiiiiiiiccs 358
Human-Al pair programming as a new collaboration modelcccoeveeeeiniiiiiccnessieieiesccnns 358
Working of the human-Al YNAMIC ... 358
Importance Of this MOAECL.............ccvveviviiiiiiiiiiiiiicccce s 358
Creative coding in practice With @ CASE SCENATIOcccvvivuiiiiiiiiiiciiiiieiiisctiee e 359
Enhancing the creative flow With Alcoovvviiioiiiiiieiiiiiieieccee e, 359
Highlighting the developer’s creative SrENGNcoovevviriuiueieieiciciciiccee s 359
From implementer t0 eXperience deSIGNErccovvviviviviiiiiiiiiiiiiit s 360
Enabling a culture of creativityy @t SCAlE...........cccvviiviiiiviiiiiiiiiicise e 360
Team practices that encourage creative COAINGoovwmmrmniniiiiiiiiiieieieieisete e 360
SHIfHNG tHe NATTALIVC.ecvvvvivitiiiicictcttett ettt ss s 361
Predictions for the future of Al programiming..........ccccerecueureeeerrinieerneneeetsineeseeesceesstesessesceessesesessesceenns 361
Autonomous coding agents will orchestrate full WOTKflOWScovvvevireureieeieiiiiiicceeess 361
Real-world signals showing the future already being prototyped.............cccoovvvvviviviviiiiiiiiniiiiiiiinns 361
Developer impact from executors t0 07CRESHALOTS.........ovvvviviiiiiiriiiiiiiiccc s 362
Natural language will become the universal programming iMterface............covvvvirviviirvicirniniieiinennn, 362
Practical implementation OVEITVIETD.ccccvoiiviiiiiiiiiiiicctcc s 362
Changes for developers And LEAMIS.ccciuiuiiiiiiiiiiiiiiiiiicicc e 362
Advancing to the multimodal prompting PRASEcccccvvviviviiiiiiiiiiiiccccce s 363

From tools to ecosystems in fully integrated Al development environmentscocoevveeeeieievevccnnnnn. 363
Future shape of Al development eCOSYSIEIMS ...ttt 363
Practical vision of this APPIOACHccovviviviiiviiiiiiiiii 363
Towards a more fluid development eXPErienCecccocoiviviviciiiiiiiiiiiiiiccie s 364
Personalization at the developer level will drive productivityccccvveivivciniiiiniiciiiiiieciccs 364
Distinct capabilities of personalized AL t00s.............cccoviuiiiiiiiiiiiiiiiiiiiiiicccca 364

Putting this i1E0 ACHOMcuvvevevieiieieiiiiciee e 365
Long-term shift from text editors to thought Partners............cccovvviviiiiiniiiiiiiiiiiiciicscccan 365
Explainability and traceability will become Mandatory.............cooovviviviinciciiiiiiiiiiiccccccceeeee 365
Future expectations for developer skills And t00IS.............ccovvvviviviviiiiiiiiiiiiiiiis 366

New kind of development artifactccovvciviiiiiiiiiiiiiiiiic 366
Ethics-aware Al tools will flag risky code i 1eal HIME...........ccccevvivieiiiiiiiiiiiiicisiccce 366
Built-in safegquards YOu CAN @XPECEccvvweiiveriieieiiiiieie et 366
Prompting Al t0 think etHiCAILYcccccoovviviviiiiiiiiiiiiiicccccc 367

Shift in the developer’s T0leccciuiiiiiiiiiiiiiiiiiiiic s 367
Non-developers will co-create SOftware USING Al............couvueuiuereieieiiiiiiiiiieieeiee s 367
ReAI-WOTIA USE CASES.......oeeiiiiiiiiiii 367
Developer’s €UOIVING TOLe ..ottt 368

New 0rganizational TINASEEovviviiiiiiiiiiieicee s 368
CONCIUSION. ..ottt a st b s a st a e s 368
QQUESTIONS ..ttt ettt ettt ettt e eette e e eette e e eetaeeeeteeeeeabeeeeestaeesesseseeessseeeasseeeenssseeenssseeesssseeassesesnsseeeensteeeensseeennnees 368
EX@TCISES ...ttt a ettt ae s 370
REEIEIICES ...ttt 370

CHAPTER 1
Al in Programming

Introduction

Atrtificial intelligence (AI) is reshaping programming in ways we once only imagined. What used to involve
hours of manual effort and repetitive tasks has evolved into a dynamic process powered by tools like GitHub
Copilot and ChatGPT. These Al companions have become essential for developers, helping them work smarter,
not harder, by simplifying complex workflows and unlocking new levels of creativity and productivity.

AT has made programming more accessible than ever. Automating tedious tasks allows developers to focus
on what truly matters: solving challenging problems and building innovative solutions. Debugging is faster,
errors are minimized, and even those new to coding can quickly grasp concepts that once felt intimidating.
Al has effectively lowered the barriers to entry, inviting more people into the world of programming and
fostering a diverse community of creators.

But Al's impact goes beyond individual programmers. It has transformed how teams collaborate and how
organizations manage projects. Tools like GitHub Copilot offer instant suggestions to streamline coding,
while ChatGPT provides expert-like support for tackling tricky algorithms and solving technical challenges.
Together, they enhance teamwork, improve efficiency, and ensure higher-quality outcomes.

What is more, Al does not just save time; it sparks innovation. Handling routine tasks frees developers to
experiment, iterate, and bring bold ideas to life. From learning new techniques to optimizing code, Al supports
growth at every step.

This chapter explores how AI has become a cornerstone of modern programming, examining its ability
to empower developers, boost creativity, and shape the future of software development through practical
applications and real-world examples.

Structure

The following topics are covered in the chapter:
e History of Al in programming

e Benefits and use cases of Al in coding

2 Al-assisted Programming for Web and Machine Learning

e Overview of GitHub Copilot and ChatGPT capabilities
e Key milestones in Al-assisted development

o Current challenges in adopting Al tools

Objectives

This chapter is designed to provide a clear and engaging exploration of how Al is transforming programming.
It takes readers on a journey through AI’s evolution, from its foundational concepts to its current role as a
vital tool in software development. The chapter examines key milestones and advancements and highlights
how Al-powered tools like GitHub Copilot and ChatGPT enhance productivity, simplify complex tasks, and
spark innovation. It also sheds light on the tangible benefits of Al such as improving code quality, making
programming more accessible to beginners, and fostering creative problem-solving. At the same time,
it addresses the challenges and ethical considerations involved in adopting Al technologies. This chapter
ultimately aims to equip readers with a deeper understanding of how AI can be leveraged to create smarter,
faster, and more collaborative programming experiences, paving the way for a future defined by the synergy
of human ingenuity and Al-driven innovation.

History of Al in programming

Al in programming started in the 1950s with big dreams of creating machines that could think like humans.
Early tools like LISP and Prolog helped computers solve problems and handle logic. In the 1980s, things
changed when computers started learning from data instead of following strict rules. Al became smarter with
better tools and faster computers, leading to incredible advancements like deep learning. Today, tools like
GitHub Copilot and ChatGPT make coding easier and faster, showing how AI has become a helpful partner
in programming.

Early beginnings

The journey of Al in programming began in the 1950s when the idea of machines that could think and act
like humans first took root. Visionaries like John McCarthy, often called the father of Al, and Marvin Minsky
imagined a future where machines could reason, solve problems, and make decisions. Back then, the focus was
on symbolic AL; creating systems that relied on predefined rules for logical reasoning and problem-solving.

A significant turning point came in 1956 with the Dartmouth Conference, which officially marked the birth of AI
as a field of study. This gathering of researchers sparked excitement and laid the foundation for programming
machines to tackle human-like tasks, such as understanding language and solving complex problems. It was
an era of bold ideas and immense technological optimism.

To support this new field, programming tools designed explicitly for Al emerged. LISP, introduced in 1958,
became one of the first languages tailored for Al, offering powerful tools for symbolic reasoning. In 1972,
Prolog followed, providing a logic-based approach to problem-solving that made it a staple in Al research.
These innovations addressed the challenges of the time and set the stage for the incredible advancements in
Al and programming we see today.

Let us delve into two foundational programming languages that were instrumental in shaping the early
development of Al and played a transformative role in advancing Al research:

e LISP: LISP quickly became a favorite among Al researchers because it worked effectively with
symbols and solved complex problems. It was beneficial for tasks like solving algebraic equations and
building expert systems, which were some of the earliest practical applications of Al Its versatility
and power made it an essential tool, helping researchers explore new possibilities and paving the way
for advancements in Al

Al in Programming 3

e Prolog: Prolog became a favorite in Al research because of its natural ability to handle logical reasoning.
It was particularly well-suited for building systems that could understand natural language and
provide intelligent, expert-level solutions. With its rule-based approach, Prolog made it easier for
researchers to break down and solve complex problems, earning its place as a key tool in the evolution
of AL

The 1970s brought a breakthrough in Al by introducing expert systems that used predefined rules to solve
specific problems. One remarkable example was MYCIN, a system developed to help doctors diagnose
bacterial infections and suggest treatments. These systems showed how Al could be applied to real-world
challenges, especially in fields like medicine and engineering, offering valuable support in decision-making
processes.

However, symbolic Al the foundation of these systems, had limitations. It relied heavily on rigid rules, which
made it struggle when faced with incomplete or unclear data. This weakness, combined with a decline in
funding and enthusiasm during the AI Winter periods of the 1970s and 1980s, significantly slowed progress. It
became evident that for Al to reach its full potential, a more flexible and data-driven approach was necessary
to move beyond the constraints of symbolic AL

Rise of machine learning

The 1980s marked a pivotal shift in AI with the rise of machine learning (ML). Unlike earlier methods that
depended on rigid, predefined rules, ML introduced systems that could learn and improve by analyzing
data. This breakthrough opened the door to new possibilities, allowing algorithms to find patterns, make
predictions, and adapt over time.

Some of the key advancements in ML during this period included the following;:

¢ Decision trees: A versatile classification and regression tool offering straightforward and interpretable
results.

¢ K-nearest neighbors (KNN): A simple yet effective method for classifying data by comparing it to
nearby examples.

e Support vector machines (SVMs): Known for handling complex and high-dimensional datasets.

One fascinating application of ML in the 1980s was in finance. Algorithms began analyzing historical market
data to predict stock trends, providing investors with valuable insights and revolutionizing trading strategies.

Another significant milestone of this era was the growing interest in neural networks. Inspired by how the
human brain processes information, neural networks aim to replicate how neurons connect and communicate.
While the time’s computational limitations constrained their potential, backpropagation, a method for
effectively training multi-layer networks, was a game-changer. This advancement significantly boosted the
capability of neural networks and set the stage for future breakthroughs in Al

The availability of larger datasets also drove ML forward during this decade. Digitized medical records,
financial data, and other sources allowed researchers to train their models more accurately. This newfound
access to data improved algorithms’ performance and paved the way for significant advancements in fields
like healthcare, finance, and beyond.

Neural networks take center stage

The 1990s and early 2000s saw neural networks make a powerful comeback, thanks to advances in algorithms
and the growing capabilities of computers. These improvements unlocked new possibilities for Al, particularly
with the emergence of specialized neural network architectures. Convolutional neural networks (CNNs)
revolutionized computer vision, enabling machines to excel at tasks like image recognition and object detection.
At the same time, recurrent neural networks (RNNs) proved invaluable for working with sequential data,
making them ideal for applications like language translation, speech analysis, and predicting time-series data.

4 Al-assisted Programming for Web and Machine Learning

The examples are as follows:

e CNNs: Accurately identifying handwritten digits in the MNIST dataset, a landmark achievement in
Al research.

e RNNs: Powering innovations like speech recognition, stock price prediction, and generating
meaningful, coherent text.

As researchers delved deeper into neural networks’ potential, deep learning began to take center stage. By
stacking multiple layers of neurons, deep learning models tackled increasingly complex challenges, pushing
the boundaries of what Al could achieve. Tools like TensorFlow, PyTorch, and Theano played a crucial role in this
progress, making it easier for developers to build and implement sophisticated AI models. These tools sparked
a wave of global innovation, enabling more people than ever to contribute to advancements in the field.

One of the most exciting breakthroughs of this era was the creation of generative adversarial networks (GANs)
in 2014. GANs introduced a way for Al to generate realistic images, videos, and even audio, showcasing a
level of creativity that had never been seen before. From entertainment and gaming to medicine and art,
GANSss opened the door to new possibilities, becoming a cornerstone of modern Al research. This marked a
shift in AI's capabilities, showing that it was not just about analyzing data or making predictions; it could also
create, innovate, and inspire.

Current era

By the 2010s, Al had reached a turning point, ushering in a golden era of programming. With the development
of large-scale language models and advanced tools, Al has transformed what developers can achieve. Systems
like GitHub Copilot and ChatGPT, built on state-of-the-art Transformer architectures, redefined the landscape.
Trained on enormous datasets with billions of parameters, these models demonstrated incredible abilities,
generating human-like text, assisting with complex coding tasks, and tackling creative challenges.

Al became more than just a tool for developers; it became a trusted collaborator. Tools like GitHub Copilot can
generate entire code snippets, design complex functions, and refine existing code, saving developers countless
hours of work. This shift has wholly transformed software development, making the process faster, more
efficient, and more productive. Al is no longer just a convenience; it is a game-changer, helping developers
innovate and create at an unprecedented pace.

The code snippet example is as follows:
AI-assisted function suggestion
from datetime import datetime
def calculate_days_between_dates(datel, date2):
dl = datetime.strptime(datel, '%Y-%m-%d")
d2 = datetime.strptime(date2, '%Y-%m-%d")
return abs((d2 - dl1).days)
Suggestion by AI tools like GitHub Copilot
print(calculate_days_between_dates('2025-01-01', '2025-01-10"))

As Al systems have become more advanced, we must make them understandable and trustworthy. Developers
and researchers are now focused on creating tools that explain how AI makes decisions, ensuring these
systems are transparent and reliable. This is especially important in healthcare and finance, where trust and
accountability are critical.

At the same time, ethical concerns have taken center stage. Questions about bias in Al training data, protecting
user privacy, and the environmental cost of training massive Al models have sparked meaningful discussions.
These concerns prompt researchers and companies to rethink how Al is built and used. The focus has shifted to

Al in Programming 5

ensuring Al is robust, fair, responsible, and sustainable. The goal is to create technology that benefits everyone
while minimizing harm.

Looking ahead, breakthroughs like quantum computing promise to take Al to an entirely new level. With
its ability to process information at speeds far beyond today’s systems, quantum computing could unlock
possibilities we can barely imagine. As Al evolves, the collaboration between humans and machines will
continue to push boundaries, driving innovation and creating a future where programming can achieve
incredible new heights.

Figure 1.1 shows how programming innovations and Al advancements have evolved. It highlights important
milestones like the creation of LISP and Prolog, the rise of ML and deep learning, and the emergence of
modern Al-assisted programming tools.

1972 1990s 2020s

Prolog Introduced Neural Networks Resurgence Al-Assisted Programming
1958 1980s 2010s
LISP Introduced Rise of Machine Learning Deep Learning Revolution
Stacked Timeline: The Evolution of Al in Programming
__________ e St i o e 4 S P Programming Evolution
===+ Al Innovations
1980s 2014
Expert Systems Emergence GANs Introduced
1956 2020s
Dartmouth Conference 2000s Transformers and
(Birth of Al) Machine Learning Dominance Large Language Models
—————————— M e e e Y e e Y e Y Y
1948 1958 1968 1978 1988 1998 2008 2018 2028

Figure 1.1: Timeline of Al and programming milestones

Benefits and use cases of Al in coding

Al has completely changed how we code, making it faster, easier, and fun. Tools like GitHub Copilot and
ChatGPT take care of boring, repetitive stuff, help you spot and fix mistakes, and even guide beginners
who are just starting. In this section, we will look at how Al saves time, makes challenging problems more
manageable, and lets developers focus on the creative parts of coding. It is like having a helpful assistant by
your side every step of the way.

Enhanced productivity

AT tools like GitHub Copilot, ChatGPT, and IntelliCode have revolutionized how developers approach their
work, making it faster and far more efficient. These tools take care of repetitive and time-consuming tasks,
allowing developers to focus on the more interesting and challenging parts of coding, like solving problems
and designing innovative solutions.

Example 1—Automating boilerplate code: Writing boilerplate code is one of the more tedious aspects of
programming. Whether it is initializing classes, setting up routes in a web application, or defining database
schemas, these repetitive tasks can take up much time. Al tools have stepped in to handle these tasks effortlessly:

e Initializing classes: Al can generate a complete class structure in seconds based on a simple prompt
or example instead of manually writing constructors and standard methods.

6 Al-assisted Programming for Web and Machine Learning

e Setting up routes: For web developers, Al can create fully functional route templates for APIs, saving
time and ensuring consistency across the codebase.

¢ Defining database schemas: Al can draft a complete database schema with just a description of data
requirements, reducing errors and speeding up the process.

By handling these repetitive tasks, Al saves time and makes development more enjoyable. It frees developers
to focus on the creative and rewarding parts, like designing innovative features and tackling complex
challenges. Think of it as having a helpful assistant who takes care of the busy work so you can focus on what
matters. Refer to the following code:
from flask import Flask, jsonify
app = Flask(__name_)
@app.route('/api/vl/resource', methods=["'GET'])
def get _resource():

return jsonify({"message"”: "Hello, World!"})

if __name__ == '_main_ ":

app.run(debug=True)

GitHub Copilot takes the hassle out of setting up a REST API. With just a brief description of what you need,
it can generate the entire fundamental structure, including routes, controllers, and models. This means you do
not have to spend hours writing the same repetitive setup code; you can skip straight to the parts that matter,
like adding custom features and refining your project. It is like having a helpful teammate who handles the
tedious setup work, letting you focus on development’s creative and problem-solving aspects.

Example 2—Suggesting code snippets: Al tools like GitHub Copilot and IntelliCode have entirely changed
the game for developers by offering smart, context-aware code suggestions. Instead of interrupting your
workflow to search online for solutions, these tools analyze your current code and suggest exactly what you
need—right when you need it.

For example:

e Error handling: If you write a function, the tool might suggest adding a try-catch block with an
appropriate error message, making your code more robust and ready for real-world use.

e Library integration: When working with a specific library, it can recommend the most relevant
functions or patterns, saving you from combing through documentation.

¢ Code optimization: Instead of a basic solution, it might offer a cleaner or more efficient approach that
makes your code faster and easier to maintain.

Refer to the following code:
Input comment:
Generate a Fibonacci sequence
def fibonacci(n):
AI-suggested implementation:
sequence = [0, 1]
for i in range(2, n):
sequence.append(sequence[-1] + sequence[-2])
return sequence
print(fibonacci(10))

With these tools, you can stay focused on your work without losing time searching for answers. It is like
having an experienced coding partner who always knows the right solution, helping you write better code
more quickly and effortlessly.

Al in Programming 7

Example 3—Automating API integrations: Integrating external APIs can often feel daunting, but Al tools
like GitHub Copilot and ChatGPT make it remarkably simple. Instead of spending hours writing and
troubleshooting code for authentication, data retrieval, and error handling, these tools generate everything
you need with just a few prompts.

Here is how they make the process easier:

¢ Authentication: No need to dig through documentation—AI can generate the code required for secure
API authentication, whether setting up API keys, handling OAuth tokens, or creating headers.

e Data retrieval: Al can write functions to fetch data from the API, process the response, and extract
useful information, saving you time and effort.

e Error handling: It does not stop at the basics; Al can add intelligent error handling, like retry logic and
custom error messages, so your integration is reliable and user-friendly.

With AI handling these repetitive and technical tasks, you can focus on the fun parts, i.e., using the API's
features to create something unique and impactful. It is like having a helpful assistant who sets everything up
for you so you can spend your time building what truly matters. Refer to the following code:

import requests
AI-generated snippet for API integration:
def get weather(city):
api_key = "your_api_key here"
base_url = "http://api.openweathermap.org/data/2.5/weather”
params = {"q": city, "appid": api_key}
response = requests.get(base_url, params=params)
return response.json()
print(get_weather("New York™))

Case study—ALI tools speed up development for a fintech company: A fintech company can completely
transform its development process by adopting Al tools like GitHub Copilot. These tools will handle repetitive
and time-consuming tasks, such as setting up APIs, fixing basic bugs, and generating routine code, allowing
developers to focus on more creative and meaningful work. This shift can save developers valuable time,
speeding up product updates and ensuring quicker releases. It will also make their work more enjoyable,
giving them the freedom to tackle challenging problems and innovate. By embracing Al, the company can
boost productivity, enhance team satisfaction, and stay ahead in a highly competitive industry, proving that
technology can make work faster and more fulfilling.

Improved code quality

Al-powered tools have become game-changers for improving code quality. They can spot potential errors,
enforce coding best practices, and offer real-time suggestions to make your code more efficient. This means
fewer bugs and cleaner, more reliable code.

These tools are even more helpful for larger teams. They ensure everyone follows the same standards, making
the code consistent and easier to read and maintain. By simplifying the process and keeping things organized,
AT tools improve the final product, making collaboration much smoother and more enjoyable for everyone
involved.

Example—Error detection: Al tools are like helpful coding assistants that catch and help you fix your mistakes
immediately. Here is how they handle common coding issues:

e Syntax errors: Whether it is a missing bracket, a typo, or a misplaced semicolon, AI can spot the issue
as you type. It highlights the problem and suggests fixing it, so you do not waste time tracking errors
later.

8 Al-assisted Programming for Web and Machine Learning

e Logical errors: Al does not stop at typos—it can catch issues with your logic, like a loop condition that
does not work or mismatched data types. Even better, it suggests fixes to get your code back on track.

By catching these errors early, AI makes your work faster, smoother, and less frustrating. It is like having a
trusted coding buddy who ensures your code is clean, efficient, and ready to run. Refer to the following code:
Code with error:
def divide(a, b):

return a / b
AI suggestion: Handle division by zero
def divide(a, b):

if b == 0:

return "Error: Division by zero"
return a / b

Another common logic oversight is assuming non-empty input. Al tools can suggest safeguards like:
def calculate_average(scores):
if not scores:
return "Error: Empty list"
return sum(scores) / len(scores)

This helps your program run without unexpected crashes by catching issues early and preventing runtime
errors. It also ensures your code handles those tricky edge cases gracefully, making it more dependable and
ready for anything it might face in the real world.

Use case—Refactoring legacy code: Many organizations deal with old, outdated code that is hard to update
or manage. Al tools make this much easier by reviewing the code and suggesting ways to improve it.

Here is how AT helps:
e Find issues: Al quickly spots inefficiencies, outdated code, and unnecessary repetition.
¢ Clean-up code: It suggests clearer, more organized versions, making the code easier to work with.
e Improve performance: Al optimizes the code to run faster and use fewer resources.

With AT’s help, organizations can breathe new life into their old systems, making them easier to manage
and ready for the future. It is like having an expert developer tidy up and improve your code. Refer to the
following code:
Legacy Code:
result = []
for i in range(len(numbers)):
result.append(numbers[i] * 2)
AI-optimized code:
result = [x * 2 for x in numbers]

Example—Automated unit testing: Al makes unit testing easy by creating tests for you. It ensures your code
works correctly and saves you time.

Here is how it helps:
e Thorough testing: Al generates test cases for all scenarios, including tricky edge cases.

¢ Finds problems early: It spots potential issues and creates tests to catch them before they cause trouble.

Al in Programming 9

e Saves time: Instead of spending hours writing tests, Al does it for you, letting you focus on building
your project.

With AL your code is more reliable and saves time and effort. It is like having a testing expert who handles
your hard work. Refer to the following code:
AI-suggested unit test:
import unittest
class TestMathFunctions(unittest.TestCase):
def test divide(self):
self.assertEqual(divide(10, 2), 5)
self.assertEqual(divide(10, ©), "Error: Division by zero")

if __name__ == "'_main_ ":

unittest.main()

Case study—How AI can transform a healthcare startup: A healthcare startup can change its trajectory by
embracing Al to tackle its outdated, messy codebase of over 100,000 lines. This tangled code can slow updates,
frustrate developers, and affect system performance. Al tools will analyze the code, clean it up, and make it
far more efficient. With AI’s help, the system can run 25% faster, and the code will be much easier to manage,
saving countless hours and reducing headaches for the team. By adopting Al the startup can future-proof its
software, boost productivity, and create a smoother, more rewarding development process. This shows how
Al can solve the most demanding coding challenges and set teams up for success.

Important caveat when reviewing Al-generated code carefully

While Al tools like GitHub Copilot and ChatGPT offer tremendous assistance by generating useful code
snippets, they are not immune to making mistakes. The code they produce may sometimes contain:

e Logical errors or subtle bugs
e Security vulnerabilities (e.g., improper input handling)
e Deprecated or non-optimized functions

Therefore, developers should always review and test Al-generated code before using it in production. Treat
these tools as helpful assistants, not final authorities. Proper unit testing, peer reviews, and adherence to
coding standards remain essential to ensure quality and reliability.

Example:

def divide(a, b):
return a / b

def divide(a, b):
if b == 0:
return "Error: Division by zero"
return a / b

By combining the speed of Al with the judgment of human developers, we get the best of both worlds—
productivity and precision.

10 Al-assisted Programming for Web and Machine Learning

Accessibility for beginners

Al feels like having a personal tutor by your side for beginner programmers. It breaks down tricky concepts
into simple, clear explanations and gives real-time guidance as you code. Whether stuck on a problem or
unsure where to start, Al offers helpful tips and support, making learning to program more manageable and
far less overwhelming.

Example interaction:
User: What is a binary search?

Al response: A binary search algorithm eficiently divides a sorted array into halves to locate
a target value. Here is an example:
def binary_search(arr, target):
low, high = @, len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
low = mid + 1
else:
high = mid - 1
return -1

print(binary_search([1, 3, 5, 7, 9], 5))

Example—Real-time debugging explanations: Al makes debugging simple by explaining errors as they
happen. It is like having a helpful guide who spots issues and shows you how to fix them. Let us look at the
following advantages:

¢ Easy to understand: Al tells you what went wrong and why instead of just showing an error.
o Fix it fast: It gives clear suggestions to solve the problem and move forward.
o Instant help: Al works in real-time, so you can immediately fix mistakes without slowing down.

Refer to the following code:

Input Code:

def calculate_average(scores):
return sum(scores) / len(scores)

AI Explanation:

"The code assumes that the input list is non-
empty. Adding a check for empty lists will prevent runtime errors.”

Example—Code translation: AI tools like ChatGPT can help learners understand how programming logic
transfers between languages:

def factorial(n):
return 1 if n == 0 else n * factorial(n - 1)

Al in Programming 11

function factorial(n) {
return n === @ ? 1 : n * factorial(n - 1);

¥
This helps beginners bridge language gaps with confidence.

Case study—How ChatGPT can make learning easier for students: An online learning platform can
completely change how students learn by using ChatGPT to provide instant help whenever they are stuck.
With real-time answers and easy-to-understand explanations, students will feel less overwhelmed and more
empowered to tackle complex topics. This support can make a huge difference, especially for beginners who
often need extra guidance. Course completion rates can rise by 30% as students gain confidence and feel
more supported throughout their learning journey. By making learning more approachable and enjoyable,
ChatGPT will help students overcome challenges and motivate them to achieve their goals. This shows how
Al can create a more human-centered, engaging, and practical educational experience for everyone.

Facilitation of innovation

Al takes care of the tedious, repetitive tasks, letting developers focus on the exciting parts, like coming up
with creative solutions and solving challenging problems. It also speeds up prototyping so teams can test and
refine ideas faster. This saves time and makes it easier to innovate and create better results.

Example—Model optimization: Alsimplifies the process ofimproving ML modelsby handling hyperparameter
tuning, which is often time-consuming and complex. Instead of testing every possible value manually,
Al-powered tools employ smarter techniques, such as Bayesian optimization, reinforcement learning, or
evolutionary algorithms, to find optimal combinations more efficiently.

Here is how it helps:

e Finds what works: Al intelligently explores the search space of learning rates, batch sizes, and tree
depths to identify the most effective combinations.

e Saves you time: Instead of testing every possibility, Al narrows down the best ones quickly.
e Improves results: Your model performs better without the trial-and-error workload.

It is like having a data scientist assistant that learns from each test and adapts the next step based on what
worked. Let us look at the code:

from skopt import BayesSearchCV
from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.model selection import train_test split
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
param_space = {
‘n_estimators’: (50, 300),
‘max_depth’: (5, 50),
'min_samples_split': (2, 10)
}
opt = BayesSearchCV(
estimator=RandomForestClassifier(),
search_spaces=param_space,
n_iter=20,

12 Al-assisted Programming for Web and Machine Learning

cv=3

)
opt.fit(X_train, y_train)
print("Best parameters found:", opt.best_params_)

While tools like Bayesian optimization offer smarter exploration, they still require human oversight. Always
validate the model’s real-world performance before deploying.

Example—Rapid prototyping: Al makes designing user interfaces fast and easy.
e Instant options: Give a few details, and Al creates multiple prototypes in seconds.
¢ Quick changes: You can test and tweak designs without wasting time starting over.
e Fresh ideas: Al offers different options to inspire creativity and find the best fit.

It is like having a creative assistant who instantly turns your ideas into designs so you can focus on perfecting
them.

Case study—How AI can help a SaaS company move faster: A SaaS company can completely change how
it develops new features by using Al to design and test prototypes. Instead of spending weeks manually
refining ideas, the team will rely on Al to quickly generate and evaluate multiple options. This approach will
cut time-to-market by 35%, allowing the company to roll out features faster and maintain a competitive edge.
By letting Al handle the tedious and time-consuming parts of the process, the team can focus on perfecting
the feature and creating something truly impactful. This is an excellent example of how Al can empower
businesses to work smarter, save time, and stay ahead in the fast-paced world of technology.

Al enhances coding

Al tools like GitHub Copilot and ChatGPT have reshaped the development experience by streamlining
repetitive tasks, supporting real-time debugging, and making code more accessible. These benefits, discussed
throughout this chapter, highlight how Al empowers developers to focus on problem-solving and innovation.
When paired with human insight and rigorous testing, Al becomes a powerful ally—amplifying productivity
while preserving code quality and creativity.

Overview of GitHub Copilot and ChatGPT capabilities

GitHub Copilot and ChatGPT have made coding much easier and more enjoyable. They take care of the boring,
repetitive stuff and help with tricky challenges, making them the perfect team for developers. Whether you
are working on something simple or solving a challenging problem, these tools have your back. Let us dive
into how they make coding smoother and more fun.

GitHub Copilot

GitHub Copilot, created by GitHub and OpenAl, is like having a super-smart coding assistant inside your
favorite IDE. It uses the Codex model to understand your work and offers helpful code suggestions.
It automates repetitive tasks and makes the whole coding process easier and faster. It is a tool that truly
transforms the way developers work.

The key capabilities of GitHub Copilot are as follows:

¢ Context-aware code suggestions: GitHub Copilot feels like having a coding buddy beside you. It looks
at the code you are working on and gives real-time suggestions that fit perfectly, whether writing a
simple function or building a complex application. It even reads your comments to understand what
you are trying to do and writes code that matches your intent, making coding faster, easier, and more
intuitive.

Al in Programming 13

Example:
Define a function to fetch user data
@app.route('/users', methods=["GET'])
def get_users():
Copilot suggestion:
users = fetch_users_from _db()
return jsonify(users)

Multi-language support: GitHub Copilot works with various programming languages, including
Python, JavaScript, Ruby, Go, C++, TypeScript, and many others. No matter what language you prefer,
Copilot is there to help. Its flexibility makes it an excellent fit for developers from all backgrounds,
making coding faster and easier for everyone.

Framework-specific assistance: GitHub Copilot is a lifesaver with frameworks like React, Django,
Flask, Angular, and Express.js. It knows these frameworks’ ins and outs, helping you write code faster
and more efficiently. Whether setting up an app or building the foundation for a complex project,
Copilot handles the heavy lifting, saving you time and making your job easier.

Example in React:
// Copilot suggests a functional component structure:
function UserProfile({ user }) {
return (
<div>
<h1>{user.name}</hl>
<p>Email: {user.email}</p>
</div>
)
}

Test case generation: GitHub Copilot makes testing easier by generating unit and integration tests.
Instead of spending time writing test cases yourself, Copilot does the hard work, giving you ready-
made, accurate tests. It is a huge time-saver and helps ensure your code is reliable and works exactly
how you want it to.

Example:

Function to test:

def add(a, b):
return a + b

Copilot-suggested test cases:

def test_add():
assert add(2, 3)
assert add(-1, 1)
assert add(e, @)

0

5
== 0

Debugging and error resolution: GitHub Copilot feels like having a helpful friend for debugging. It
catches issues in your code, suggests fixes, and even gives tips to avoid common mistakes. It is there
to make your coding smoother and your work easier.

Real-time collaboration: In a team setting, GitHub Copilot feels like an extra pair of hands. It
suggests code snippets, helps sort out conflicts, and makes working together easier—whether pair

